您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 四川省广元市2019届高三数学第一次适应性统考试题(含解析)
四川省广元市2019届高三数学第一次适应性统考试题(含解析)第Ⅰ卷一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A.B.C.D.【答案】D【解析】【分析】利用并集概念与运算即可得到结果.【详解】∵A={1,2,3},B={2,3,4},∴A∪B={1,2,3,4}故选:D.【点睛】本题考查并集及其运算,解题的关键是正确理解并集的定义及求并集的运算规则,是集合中的基本概念型题.2.下列四个图各反映了两个变量的某种关系,其中可以看作具有较强线性相关关系的是()A.①③B.①④C.②③D.①②【答案】B【解析】试题分析::∵两个变量的散点图,若样本点成带状分布,则两个变量具有线性相关关系,∴两个变量具有线性相关关系的图是①和④.考点:变量间的相关关系3.已知是虚数单位,复数的共轭复数为()A.B.C.D.【答案】A【解析】试题分析:因为,所以共轭复数为,选A.考点:复数概念【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为4.已知,,,则的大小关系为()A.B.C.D.【答案】D【解析】【分析】根据指数函数以及对数函数的性质判断即可.【详解】a=21.2>2>b=()﹣0.8=20.8>1>c=ln2,故a>b>c,故选:D.【点睛】本题考查了指数函数以及对数函数的单调性问题,是一道基础题,解题关键是选择好中间量.5.向量,向量,若,则实数的值为()A.B.1C.2D.3【答案】C【解析】试题分析:,,,故选C.考点:向量的垂直的充要条件.6.已知是不重合的直线,是不重合的平面,有下列命题:①若,则;②若,则;③若,则且;④若,则.其中真命题的个数是()A.0B.1C.2D.3【答案】B【解析】【分析】要求解本题,根据平面与平面平行的判定与直线与平面平行的判定进行判定需要寻找特例,进行排除即可.【详解】①若m⊂α,n∥α,则m与n平行或异面,故不正确;②若m∥α,m∥β,则α与β可能相交或平行,故不正确;③若α∩β=n,m∥n,则m∥α且m∥β,m也可能在平面内,故不正确;④若m⊥α,m⊥β,则α∥β,垂直与同一直线的两平面平行,故正确故选:B.【点睛】本题主要考查了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考查,属中档题7.下列说法中正确的是()A.“”是“函数是奇函数”的充要条件B.若:,,则:,C.若为假命题,则均为假命题D.“若,则”的否命题是“若,则”【答案】D【解析】试题分析:对于A中,如函数是奇函数,但,所以不正确;B中,命题,则,所以不正确;C中,若为假命题,则,应至少有一个假命题,所以不正确;D中,命题“若,则”的否命题是“若,则”是正确的,故选D.考点:命题的真假判定.8.已知函数,则其导函数的图象大致是()A.B.C.D.【答案】A【解析】试题分析:,这是一个奇函数,图象关于原点对称,故排除B,D两个选项.令,,所以在时切线的斜率小于零,排除C,故选A.考点:函数导数与图象.9.阅读如图所示的程序框图,若输出的数据为141,则判断框中应填入的条件为()A.B.C.D.【答案】C【解析】【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】当S=0,k=1时,不满足输出条件,进行循环,执行完循环体后,S=1,k=2,当S=1,k=2时,不满足输出条件,进行循环,执行完循环体后,S=6,k=3,当S=6,k=9时,不满足输出条件,进行循环,执行完循环体后,S=21,k=4,当S=21,k=4时,不满足输出条件,进行循环,执行完循环体后,S=58,k=5,当S=58,k=5时,不满足输出条件,进行循环,执行完循环体后,S=141,k=6,此时,由题意,满足输出条件,输出的数据为141,故判断框中应填入的条件为k≤5,故答案为:C【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.已知等比数列中,,,则()A.2B.4C.8D.16【答案】B【解析】试题分析:因为,所以,所以==,故选B.考点:等比数列的通项公式.11.已知函数的部分图象如图所示,则()A.B.C.D.【答案】C【解析】【分析】根据已知中函数的图象,可分析出函数的最值,确定A的值,分析出函数的周期,确定ω的值,将(,-3)代入解析式,可求出ϕ值,进而求出.【详解】由图可得:函数的最大值3,∴,又∵,ω>0,∴T=π,ω=2,将(,-3)代入,得sin(ϕ)=,∴ϕ=,即ϕ=,又∴ϕ=,∴∴故选:C【点睛】本题主要考查的知识点是由函数的部分图象求三角函数解析式的方法,其中关键是要根据图象分析出函数的最值,周期等,进而求出A,ω和φ值,考查了数形结合思想,属于中档题.12.定义域为的可导函数的导函数为,且满足,则下列关系正确的是()A.B.C.D.【答案】A【解析】设,则在上递减,,即,化为,故选A.【方法点睛】本题主要利用导数研究函数的单调性、构造函数比较大小,属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.二、填空题(将答案填在答题纸上)13.若角的顶点在坐标原点,始边为轴的正半轴,其终边经过点,___.【答案】【解析】【分析】由题意利用任意角的三角函数的定义,求得tanα的值.【详解】角α的顶点在坐标原点,始边为x轴的正半轴,其终边经过点P(﹣3,﹣4),则tanα,故答案为:.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.14.设变量满足,则的最小值为_______.【答案】-2【解析】【分析】先作出不等式组对应的可行域,再利用数形结合分析得到z的最小值.【详解】由题得不等式组对应的可行域如图所示,由题得y=2x-z,直线的斜率为2,纵截距为-z,当直线经过点A(0,2)时,纵截距最大,z最小,所以z的最小值为2×0-2=-2.故答案为:-2【点睛】本题主要考查线性规划求函数的最值,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.15.如图某几何体的三视图是直角边长为1的三个等腰直角三角形,则该几何体的外接球的表面积为_____.【答案】【解析】【分析】依题意知,该几何体为从底面直角顶点出发的三条棱两两垂直的三棱锥,可将其补成一个边长为1的正方体,该几何体的外接球就是补成的正方体的外接球,从而可得答案.【详解】∵该几何体的三视图是直角边长为1的三个等腰直角三角形,∴该几何体为从底面直角顶点出发的三条棱两两垂直的三棱锥,可将其补成一个边长为1的正方体,则该几何体的外接球就是补成的正方体的外接球,∵补成的正方体的对角线长l为其外接球的直径d,∴外接球的表面积S=πd2=3π,即该几何体的外接球的表面积为3π,故答案为:.【点睛】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.16.已知函数(,为自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是______.【答案】【解析】因为函数为自然对数的底数)与的图象上存在关于轴对称的点,等价于,在上有解,设,求导得,在有唯一的极值点,在上单调递增,在上单调递减,,,的值域为,故方程在上有解等价于,从而的取值范围是,故答案为.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.设为数列的前项和,已知,对任意,都有.(1)求数列的通项公式;(2)若数列的前项和为,证明:..【答案】(1)(2)见证明【解析】【分析】(1)运用数列的递推式,化简整理即可得到所求通项公式;(2)bn,由裂项相消求和即可得到所求和.【详解】(1)因为,当时,两式相减得:即,所以当时,.所以,即.(2)因为,,,所以.所以,因为,所以.又因为在上是单调递减函数,所以在上是单调递增函数.所以当时,取最小值,所以.【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18.在中,分别是角的对边,.(1)求角的大小;(2)若,求的面积的最大值.【答案】(1)(2)【解析】试题分析:(1)先根据正弦定理将边角关系转化为角的关系,再根据两角和正弦公式以及诱导公式化简得,最后根据三角形内角范围求角的大小;(2)由余弦定理得,再根据基本不等式得,最后根据面积公式得最大值试题解析:解:(Ⅰ)因为,所以,由正弦定理得,即,又,所以,所以,在中,,所以,所以.(Ⅱ)由余弦定理得:,∴,∴,当且仅当时“”成立,此时为等边三角形,∴的面积的最大值为.19.2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,采用分层抽样的方法从中抽取名学生进行调查.(1)已知抽取的名学生中含女生45人,求的值及抽取到的男生人数;(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的列联表.请将列联表补充完整,并判断是否有99%的把握认为选择科目与性别有关?说明你的理由;(3)在抽取的选择“地理”的学生中按分层抽样再抽取6名,再从这6名学生中抽取2人了解学生对“地理”的选课意向情况,求2人中至少有1名男生的概率.0.050.013.8416.635参考公式:.【答案】(1),男生55人;(2)见解析;(3)【解析】【分析】(1)利用频率与频数和样本容量的关系求出n和男生的人数;(2)求出列联表,计算观测值,对照临界值得出结论;(3)由分层抽样得到6名学生中男、女人数,用列举法求出基本事件数,计算所求的概率值.【详解】(1)由题意得:,解得,男生人数为:550×=55人.(2)列联表为:选择“物理”选择“地理”总计男生451055女生252045总计7030100,,所以有99%的把握认为选择科目与性别有关.(3)从30个选择地理的学生中分层抽样抽6名,所以这6名学生中有2名男生,4名女生,男生编号为1,2,女生编号为a,b,c,d,6名学生中再选抽2个,则所有可能的结果为Ω={ab,ac,ad,a1,a2,bc,bd,b1,b2,cd,c1,c2,d1,d2,12},至少一名男生的结果为{a1,a2,b1,b2,c1,c2,d1,d2,12},所以2人中至少一名男生的概率为【点睛】(1)独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3)查表比较与临界值的大小关系,作统
本文标题:四川省广元市2019届高三数学第一次适应性统考试题(含解析)
链接地址:https://www.777doc.com/doc-8026000 .html