您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高中数学必修二知识点总结
精编WORD文档下载可编缉打印下载文档,远离加班熬夜高中数学必修二知识点总结篇一:高一数学必修2知识点总结高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即k?tan?。斜率反映直线与轴的倾斜程度。当???0?,90??时,k?0;当???90?,180??时,k?0;当??90?时,k不存在。y?y1(x1?x2)②过两点的直线的斜率公式:k?2x2?x1注意下面四点:(1)当x1?x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。精编WORD文档下载可编缉打印下载文档,远离加班熬夜(3)直线方程①点斜式:y?y1?k(x?x1)直线斜率k,且过点?x1,y1?注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。②斜截式:y?kx?b,直线斜率为k,直线在y轴上的截距为b③两点式:④截矩式:y?y1y2?y1xa?y?x?x1x2?x1(x1?x2,y1?y2)直线两点?x1,y1?,?x2,y2??1b其中直线l与x轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a,b。⑤一般式:Ax?By?C?0(A,B不全为0)1各式的适用范围○2特殊的方程如:注意:○平行于x轴的直线:y?b(b为常数);平行于y轴的直线:x?a(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线A0x?B0y?C0?0(A0,B0是不全为0的常数)精编WORD文档下载可编缉打印下载文档,远离加班熬夜的直线系:A0x?B0y?C?0(C为常数)(二)过定点的直线系(ⅰ)斜率为k的直线系:y?y0?k?x?x0?,直线过定点?x0,y0?;(ⅱ)过两条直线l1:A1x?B1y?C1?0,l2:A2x?B2y?C2?0的交点的直线系方程为,其中直线l2不在直线系中。?A1x?B1y?C1????A2x?B2y?C2??0(?为参数)(6)两直线平行与垂直当l1:y?k1x?b1,l2:y?k2x?b2时,l1//l2?k1?k2,b1?b2;l1?l2?k1k2??1注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点l1:A1x?B1y?C1?0l2:A2x?B2y?C2?0相交交点坐标即方程组??A1x?B1y?C1?0的一组解。?A2x?B2y?C2?0方程组无解?l1//l2;方程组有无数解?l1与l2重合(8)两点间距离公式:设A(x1,y1),B是平面直角坐标系中的两个点,(x2,y2)精编WORD文档下载可编缉打印下载文档,远离加班熬夜则|AB|?(9)点到直线距离公式:一点P?x0,y0?到直线l1:Ax?By?C?0的距离d(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。?Ax0?By0?CA?B22二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程?x?a???y?b??r2,圆心?a,b?,半径为r;22(2)一般方程x2?y2?Dx?Ey?F?0当D?E222?4F?0时,方程表示圆,此时圆心为???精编WORD文档下载可编缉打印下载文档,远离加班熬夜?22D2,?1E?,半径为r??22?D2?E2?4F当D?E?4F?0时,表示一个点;当D?E?4F?0时,方程不表示任何图形。(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:精编WORD文档下载可编缉打印下载文档,远离加班熬夜(1)设直线l:Ax?By?C?0,圆C:?x?a?2??y?b?2?r2,圆心C?a,b?到l的距离为d?Aa?Bb?CA?B222,则有d?r?l与C相离;d?r?l与C相切;d?r?l与C相交22(2)设直线l:Ax?By?C?0,圆C:?x?a???y?b??r2,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为?,则有??0?l与C相离;??0?l与C相切;??0?l与C相交2注:如果圆心的位置在原点,可使用公式xx0?yy0?r去解直线与圆相切的问题,其中?x0,y0?表示切点坐标,r表示半径。(3)过圆上一点的切线方程:22①圆x2+y2=r,圆上一点为(x0,y0),则过此点的切线方程为xx0?yy0?r(课本命题).2222精编WORD文档下载可编缉打印下载文档,远离加班熬夜②圆(x-a)+(y-b)=r,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r(课本命题的推广).4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆C1:?x?a1?2??y?b1?2?r2,C2:?x?a2?2??y?b2?2?R2两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当d?R?r时两圆外离,此时有公切线四条;当d?R?r时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当R?r?d?R?r时两圆相交,连心线垂直平分公共弦,有两条外公切线;当d?R?r时,两圆内切,连心线经过切点,只有一条公切线;当d?R?r时,两圆内含;当d?0时,为同心圆。三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱ABCDE?A'B'C'D'E'或用对角线的端点字母,如五棱柱精编WORD文档下载可编缉打印下载文档,远离加班熬夜'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P?ABCDE几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等'''''表示:用各顶点字母,如五棱台P?ABCDE几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底精编WORD文档下载可编缉打印下载文档,远离加班熬夜面圆的半径垂直;④侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体'''''几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,精编WORD文档下载可编缉打印下载文档,远离加班熬夜即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半。4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线)'S直棱柱侧面积S正棱台侧面积?12?chS圆柱侧?2?rhS正棱锥侧面积(c1?c2)h'S圆台侧面积?(r?R)?l?12ch'S圆锥侧面积??rlS圆柱表?2?r?r?l?S圆锥表??r?r?l?S圆台精编WORD文档下载可编缉打印下载文档,远离加班熬夜表???r2?rl?Rl?R2?(3)柱体、锥体、台体的体积公式??V柱?ShV圆柱?ShV台?13(S?'21rhV锥?ShV圆锥?1?r2h33S)hV圆台?13(S?'S)h?13?(r?rR?R)h22(4)球体的表面积和体积公式:V球4、空间点、直线、平面的位置关系=精编WORD文档下载可编缉打印下载文档,远离加班熬夜43?R3;S球面=4?R2(1)平面①平面的概念:A.描述性说明;B.平面是无限伸展的;②平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。③点与平面的关系:点A在平面?内,记作A??;点A不在平面?内,记作A??点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作A?l;直线与平面的关系:直线l在平面α内,记作l?α;直线l不在平面α内,记作l?α。(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。(即直线在平面内,或者平面经过直线)应用:检验桌面是否平;判断直线是否在平面内用符号语言表示公理1:A?l,B?l,A??,B???l??(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。推论:一直线和直线外一点确定一平面;两相交直线确定一精编WORD文档下载可编缉打印下载文档,远离加班熬夜平面;两平行直线确定一平面。公理2及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a。符号语言:P?A?B?A?B?l,P?l公理3的作用:①它是判定两个平面相交的方法。②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。③它可以判断点在直线上,即证若干个点共线的重要依据。(5)公理4:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交。③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成
本文标题:高中数学必修二知识点总结
链接地址:https://www.777doc.com/doc-8028426 .html