您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 陕西省西安中学2020届高三数学上学期期中试题 理
陕西省西安中学2020届高三数学上学期期中试题理第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合120Axxx,1,0,1,2B,则AB()A.0,1B.1,0,1C.0,1,2D.1,0,1,22.命题“对任意xR都有21x”的否定是()A.对任意xR,都有21xB.不存在xR,使得21xC.存在0xR,使得201xD.存在0xR,使得201x3.在等差数列中,a2=4,a3=6,则a10=()A.20B.22C.18D.164.下列函数中,既是偶函数又有零点的是()A.12yxB.tanyxC.xxyeeD.lnyx5.若2tan3,则2sin3sincossin2()A.116B.23C.43D.26.函数f(x)=2x+3x的零点所在的一个区间是()A.2,1B.1,0C.0,1D.1,27.已知函数211()ln(1)1xxfxxx,,,则2(())ffe=()A.2B.2C.4D.48.若实数,xy满足约束条件20201xyxyy,则2zxy的最小值是()A.2B.3C.4D.59.已知0.81.41.40.8aa,则实数a的取值范围是()A.(0),B.(01),C.(1),D.[1+),10.在直角ABC中,3AB,4AC,5BC,点M是ABC外接圆上任意一点,则ABAM的最大值为()A.6B.8C.10D.1211.已知定义在R上的函数fx在0,7上有1和6两个零点,且函数2fx与函数7fx都是偶函数,则fx在0,2019上的零点至少有()个A.404B.406C.808D.81212.定义在R上的函数()fx的导函数为()fx,若对任意实数x,都有()()fxfx,且()2019fx为奇函数,则不等式()20190xfxe的解集为()A.,0B.0,C.1,eD.1,e第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分.13.已知(2,)am,(5,2)bm,若a与b平行,则m.14.若不等式22+50xmxm恒成立,则实数m的取值范围为.15.函数212log231yxx的递减区间为.16.已知aR,函数4()fxxaax在区间1,4上的最大值是5,则实数a的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)已知向量(sin,1)mx,3cos,cos2(0)2AnAxxA,函数()fxmn的最大值为6.(Ⅰ)求A;(Ⅱ)将函数y=f(x)的图像向左平移π12个单位,再将所得图像上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y=g(x)的图像,求g(x)在0,5π24上的值域.18.(本小题满分12分)在ABC角中,角A,B,C的对边分别是abc,,,若sin3cosaBbA.(Ⅰ)求角A的大小;(Ⅱ)若ABC的面积为23,5a,求ABC的周长.19.(本小题满分12分)设函数xexaxxf22,其中0a.(Ⅰ)当34a时,求xf的极值点;(Ⅱ)若xf在1,1上为单调函数,求a的取值范围.20.(本小题满分12分)以椭圆2222:1(0)yxCabab的中心O为圆心,以2ab为半径的圆称为该椭圆的“伴随”.已知椭圆的离心率为23,且过点1(,3)2.(Ⅰ)求椭圆C及其“伴随”的方程;(Ⅱ)过点0,Pm作“伴随”的切线l交椭圆C于A,B两点,记(AOBO为坐标原点)的面积为AOBS,求AOBS的最大值.21.(本小题满分12分)已知函数cos()axfxbx,曲线()yfx在点,22f处的切线方程为620xy.(Ⅰ)求()fx的解析式;(Ⅱ)判断方程3()12fx在0,2内的解的个数,并加以证明.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,那么按所做的第一题计分.22.(本小题满分10分)[选修4—4:坐标系与参数方程]在直角坐标系xOy中,曲线1cos:sinxtCyt,t(为参数,)0t,其中0,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线2C:sin2,曲线3C:23cos.(Ⅰ)求2C与3C交点的直角坐标;(Ⅱ)若1C与2C相交于点A,1C与3C相交于点B,求||AB的最大值.23.(本小题满分10分)[选修4—5:不等式选讲]已知0a,0b,1ab.求证:(Ⅰ)3311()1abab;(Ⅱ)229(1)(1)2ab.西安中学高2020届高三期中考试数学(理科)参考答案一、选择题:题号123456789101112答案ADADABCBADCB二、填空题:13.4314.[210],15.1,16.9,2三、解答题:17.解:(Ⅰ)()fxmn=3Asinxcosx+A2cos2x=A32sin2x+12cos2x=Asin2x+π6.··········································(4分)因为A0,由题意知A=6.················································(5分)(Ⅱ)由(Ⅰ)f(x)=6sin2x+π6.将函数y=f(x)的图像向左平移π12个单位后得到y=6sin2x+π12+π6=6sin2x+π3的图像;··········································································(7分)再将得到图像上各点横坐标缩短为原来的12倍,纵坐标不变,得到y=6sin4x+π3的图像.因此g(x)=6sin4x+π3.······························································(9分)因为x∈0,5π24,所以4x+π3∈π3,7π6,故g(x)在0,5π24上的值域为[-3,6].·········································(12分)18.解:(Ⅰ)由正弦定理得:sinsin3sincosABBA,························(2分)sin0B,∴tan3A,··········································································(4分)A是ABC的内角,∴60A.··············································································(6分)(Ⅱ)ABC的面积为23,∴1sin232bcA,由(Ⅰ)知°60A,∴8bc,··············································································(8分)由余弦定理得:2222222cos3abcbcAbcbcbcbc,·····(10分)∴22425bc,得:7bc,∴ABC的周长为12.·······························································(12分)19.解:对)(xf求导得2()212xfxaxaxe·····························(1分)(Ⅰ)若34a,由2242'()212233xxfxaxaxexxe令0)('xf,因为0xe,则2422033xx,123,12xx解得·······(2分)所以xfxf',随x变化而变化的情况为:所以,231x是极大值点,12x是极小值点.····························(5分)(注:未注明极大、极小值扣1分)(Ⅱ)若)(xf为1,1上的单调函数,又02)0('f,所以当1,1x时0)('xf,即0212)(2xaaxxg在1,1上恒成立.···················(6分)(1)当0a时,()22(1)0gxxg,符合题意;···················(8分)(2)当0a时,抛物线212)(2xaaxxg开口向上,则()0gx的充要条件是0101gg,即0430aa,所以340a.综合(1)(2)知a的取值范围是x)23,(23)1,23(1),1()(xf+0-0+)(xf↗极大值↘极小值↗340a.···································(12分)20.解:(Ⅰ)椭圆C的离心率为32,则2ab=,设椭圆C的方程为222214yxbb+=∵椭圆C过点1(,3)2,∴1414322bb,∴1b,2a∴椭圆C的标准方程为2214yx,················································(3分)椭圆C的“伴随”方程为221xy.···············································(4分)(Ⅱ)由题意知,1||m.······················································(5分)易知切线l的斜率存在,设切线l的方程为,ykxm由22,14ykxmyx得222(4)240kxkmxm设A,B两点的坐标分别为11(,)xy,22(,)xy,则12224kmxxk,212244mxxk.··················································(7分)又由l与圆221xy+=相切,所以2||11mk=+,221km.·············(8分)所以221212||1()4ABkxxxx=++-222222244(4)1(4)4kmmkkk22224144kkmk224314kk······························································(10分)22123124AOBkSABk.令211,kt,则221kt,代入上式得:223232313323AOBtSttt(当且仅当3t,即2k时等号成立)所以AOBS的最大值为1.···············································(12分)21.解:(Ⅰ)直线6π2π0xy的斜率为π6,过点,12π,2sincos'axxxfxx,则26
本文标题:陕西省西安中学2020届高三数学上学期期中试题 理
链接地址:https://www.777doc.com/doc-8035640 .html