您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 山西省运城市景胜中学2019-2020学年高二数学9月月考试题 理(含解析)
山西省运城市景胜中学2019-2020学年高二数学9月月考试题理(含解析)一.选择题1.点P在直线a上,直线a在平面α内可记为()A.P∈a,a⊂αB.P⊂a,a⊂αC.P⊂a,a∈αD.P∈a,a∈α【答案】A【解析】【分析】根据线、面都是由点组成,借助于元素与集合和集合与集合的关系表示.【详解】点P在直线a上,直线a在平面α内可记为P∈a,a⊂α;故选:A.【点睛】本题考查了几何中,点与线、线与面的位置关系的表示;考查了数学符号语言的应用,属于基础题.2.直线l是平面外的一条直线,下列条件中可推出//l的是()A.l与内的一条直线不相交B.l与内的两条直线不相交C.l与内的无数条直线不相交D.l与内的任意一条直线不相交【答案】D【解析】【分析】根据直线与平面平行的定义来进行判断.【详解】对于选项A,l与平面内的一条直线不相交,则直线l、l与相交以及//l都有可能,A选项不正确;对于B选项,l与内的两条直线不相交,则直线l、l与相交以及//l都有可能,B选项不正确;对于C选项,若l与内的无数条平行直线平行时,则l或//l,C选项不正确;对于D选项,//l,根据直线与平面平行的定义,可知直线l与平面内的任意一条直线都不相交,D选项正确.故选:D.【点睛】本题考查线面平行条件的判断,考查线面平行的定义,考查逻辑推理能力,属于中等题.3.在梯形ABCD中,90ABC,//ADBC,222BCADAB.将梯形ABCD绕AD所在直线旋转一周而形成的曲面所围成的几何体的体积为()A.23B.43C.53πD.2【答案】C【解析】【详解】由题意可知旋转后的几何体如图:直角梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为2215121133VVV圆柱圆锥故选C.考点:1、空间几何体的结构特征;2、空间几何体的体积.4.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.814B.16C.9D.274【答案】A【解析】【详解】正四棱锥P-ABCD的外接球的球心在它的高1PO上,记为O,PO=AO=R,14PO,1OO=4-R,在Rt△1AOO中,12AO,由勾股定理2224RR得94R,∴球的表面积814S,故选A.考点:球的体积和表面积5.某几何体的三视图如图所示,则该几何体的体积为()A.13B.23C.123D.223【答案】A【解析】【详解】由三视图可知该几何体为半圆柱与三棱锥的结合体,其中半圆柱的底面圆半径为1,圆柱的高为2,三棱锥的底面为等腰三角形,三边长分别为2,2,2,棱锥的高为1,所以几何体的体积为21111122212323V,故选A.点睛:关于三视图的考查是高考中的必考点,一般考试形式为给出三视图,求解该几何体的体积或表面积。三视图问题首先观察俯视图确定几何体的底面形状,再结合正视图,侧视图确定几何体的准确形状,如本题中俯视图为矩形和三角形的结合,所以该几何体为组合体,结合侧视图可知该几何体为圆柱和三棱柱的组合体,进而由图中数据求得体积.6.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A.36πB.64πC.144πD.256π【答案】C【解析】【详解】如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥OABC的体积最大,设球O的半径为R,此时2311136326OABCCAOBVVRRR,故6R,则球O的表面积为24144SR,故选C.考点:外接球表面积和椎体的体积.7.如图,在长方体1111ABCDABCD中,6AB,4AD,13AA,分别过BC、11AD的两个平行截面将长方体分成三部分,其体积分别记为111AEADFDVV,11112EBEAFCFDVV,11113BEBCFCVV.若123::1:4:1VVV,则截面11AEFD的面积为()A.413B.813C.410D.16【答案】A【解析】【分析】利用123::1:4:1VVV得出11111::1:4:1AAEBBEAEBESSS四边形,可得出:AEBE的值,并求出AE的值,并利用勾股定理求出1AE的值,再利用矩形的面积公式可得出截面11AEFD的面积.【详解】易知平面11//AEFD平面11BCFE,平面11AEFDI平面ABCDEF,平面11BCFEI平面ABCDBC,//EFBC,同理可得出11//AEBE,又11//ABAB,即11//BEAE,四边形11AEBE为平行四边形,11BEAE,又11ABAB,11AEBE,又11BBAA,11190AAEBBEo,111AAEBBE,由于三棱柱11AEADFD、四棱柱1111EBEAFCFD、三棱柱1111BEBCFC的高相等,所以11111123::::1:4:1AAEBBEAEBEVVVSSS四边形,即111111::1:4:122AAAEBEAABEAA,11::1:2:1AEBEBE,123AEAB,由勾股定理得2222113213AEAAAE,11AD平面11ABBA,1AE平面11ABBA,111ADAE,易知四边形11AEFD为矩形,它的面积为11111413AEFDSADAE四边形,故选:A.【点睛】本题考查柱体的体积比以及截面面积的求解,解题的关键就是要确定截面的形状,并计算出截面图形的一些几何量,考查空间想象能力与计算能力,属于中等题.8.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是A.B.C.D.【答案】A【解析】对于选项B中,由于//ABMQ,结合线面平行判定定理可可知B不满足题意;对于选项C中,由于//ABMQ,结合线面平行的判定定理可知C不满足题意;对于选项D中,由于//ABNQ,结合线面平行的判定定理可知D不满足题意;所以选项A满足题意,故选A.9.已知球的直径SC=4,A,B是该球球面上的两点,AB=3,30ASCBSC,则棱锥S—ABC的体积为()A.33B.23C.3D.1【答案】C【解析】【详解】设球心为点O,作AB中点D,连接OD,CD因为线段SC是球的直径,所以它也是大圆的直径,则易得:∠SAC=∠SBC=90°所以在Rt△SAC中,SC=4,∠ASC=30°得:AC=2,SA=2又在Rt△SBC中,SC=4,∠BSC=30°得:BC=2,SB=2则:SA=SB,AC=BC因为点D是AB的中点所以在等腰三角形ASB中,SD⊥AB且SD===在等腰三角形CAB中,CD⊥AB且CD===又SD交CD于点D所以:AB⊥平面SCD即:棱锥S-ABC的体积:V=AB•S△SCD,因为:SD=,CD=,SC=4所以由余弦定理得:cos∠SDC=(SD2+CD2-SC2)=(+-16)==则:sin∠SDC==由三角形面积公式得△SCD的面积S=SD•CD•sin∠SDC==3所以:棱锥S-ABC的体积:V=AB•S△SCD==故选C解析:本题是中档题,考查球的内接棱锥的体积的求法,考查空间想象能力,计算能力,有难度的题目,常考题型.设球心为点O,作AB中点D,连接OD,CD,说明SC是球的直径,利用余弦定理,三角形的面积公式求出S△SCD,和棱锥的高AB,即可求出棱锥的体积.10.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.110B.25C.3010D.22【答案】C【解析】以C为原点,直线CA为x轴,直线CB为y轴,直线1CC为z轴,则设CA=CB=1,则(0,1,0)B,11(,,1)22M,A(1,0,0),1(,0,1)2N,故11(,,1)22BM,1(,0,1)2AN,所以cos,BMANBMANBMAN3465223010,故选C.考点:本小题主要考查利用空间向量求线线角,考查空间向量的基本运算,考查空间想象能力等数学基本能力,考查分析问题与解决问题的能力.11.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.2865B.3065C.56125D.60125【答案】B【解析】【详解】从所给的三视图可以得到该几何体为三棱锥,如图所示,本题所求表面积应为三棱锥四个面的面积之和,利用垂直关系和三角形面积公式,可得:10,10,1065SSSS后右底左,,因此该几何体表面积3065SSSSS后右底左,故选B。【考点定位】本小题主要考查的是三棱锥的三视图问题,一般都是求棱锥或棱柱的体积而这道题是求表面积,因此考查学生计算基本功以及空间想象的能力12.已知三棱锥SABC的所有顶点都在球O的求面上,ABC是边长为1的正三角形,SC为球O的直径,且2SC,则此棱锥的体积为()A.26B.36C.23D.22【答案】A【解析】【详解】根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1=233323,∴116133OO,∴高SD=2OO1=263,∵△ABC是边长为1的正三角形,∴S△ABC=34,∴132623436SABCV三棱锥.考点:棱锥与外接球,体积.【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.二.填空题13.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120,弧长为2,底面圆的半径为1,则该圆锥的体积为__________.【答案】22π3【解析】【分析】根据扇形的弧长计算出圆锥的母线长,并利用勾股定理计算出圆锥的高,最后利用锥体的体积公式可计算出圆锥的体积.【详解】因为扇形的弧长为2,所以圆锥母线长l满足223l,所以母线长3l,高为22,所以体积为212212233,填223.【点睛】本题考查圆锥的体积,解题的关键在于根据题中条件计算出圆锥的相关几何量,并利用锥体体积公式计算圆锥的体积,考查计算能力,属于中等题.14.某几何体的三视图如图所示,网格纸的小方格是边长为1的正方形,则该几何体中最长的棱长是___________.【答案】5【解析】【分析】根据三视图将几何题还原,然后结合题中的数据计算出几何体的每一条棱长,从而可得出答案.【详解】几何体的直观图如下图所示:该几何体为三棱锥DABC,过BC作直线AD的垂面,设直线AD与该垂面的交点为点O,由三视图可知,1AD,2AO,1ODOBOC,且OD、OB、OC两两垂直,所以,2BCBDCD,AOQ平面OBC,OB、OC平面OBC,AOOB,AOOC,由勾股定理得2222215ABACAOOB,因此,该几何体最长的棱长为5,故答案为:5.【点睛】本题考查由三视图计算几何体的棱长,利用三视图将几何体进行还原是解题的关键,考查空间想象能力与计算能力,属于中等题.15.三棱锥PABC中,,ED分别为,PBPC的中点,记三棱锥DABE的体积为1V,PABC的体积为2V,则12VV___________
本文标题:山西省运城市景胜中学2019-2020学年高二数学9月月考试题 理(含解析)
链接地址:https://www.777doc.com/doc-8042647 .html