您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2020新教材高中数学 第十一章 立体几何初步测评 新人教B版必修第四册
第十一章立体几何初步测评(时间:120分钟满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是()A.平行B.相交C.平行或相交D.不相交解析由棱台的定义知,各侧棱的延长线交于一点,所以选B.答案B2.一直线l与其外三点A,B,C可确定的平面个数是()A.1个B.3个C.1个或3个D.1个或3个或4个解析当A,B,C共线且与l平行或相交时,确定一个平面;当A,B,C共线且与l异面时,可确定3个平面;当A,B,C三点不共线时,可确定4个平面.答案D3.若三个平面两两相交,有三条交线,则下列命题中正确的是()A.三条交线为异面直线B.三条交线两两平行C.三条交线交于一点D.三条交线两两平行或交于一点解析三平面两两相交,交线如有2条平行,由线面平行性质定理知三条都平行,如三棱柱三侧棱;三条交线也可以交于一点,如三棱锥三侧棱.答案D4.如图,在△ABC中,∠BAC=90°,PA⊥面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是()A.5B.8C.10D.6解析这些直角三角形是:△PAB,△PAD,△PAC,△BAC,△BAD,△CAD,△PBD,△PCD.共8个.答案B5.(2019高考全国Ⅱ卷文数)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面解析α内有无数直线与β平行是α∥β的必要不充分条件,A不符合;α内有两条相交直线与β平行是α∥β的充要条件,B符合;α,β平行同一条直线是α∥β的必要不充分条件,C不符合;α,β垂直同一平面是α∥β的必要不充分条件,D不符合.答案B6.如图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M,N分别是棱DD1,D1C1的中点,则直线OM()A.与AC,MN均垂直相交B.与AC垂直,与MN不垂直C.与MN垂直,与AC不垂直D.与AC,MN均不垂直解析易证AC⊥面BB1D1D,OM⊂面BB1D1D,∴AC⊥OM.计算得OM2+MN2=ON2=5,∴OM⊥MN.答案A7.(2019高考全国Ⅲ卷文数)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线解析如图,连接BD,BE.在△BDE中,N为BD的中点,M为DE的中点,∴BM,EN是相交直线,排除选项C、D.作EO⊥CD于点O,连接ON.作MF⊥OD于点F,连接BF.∵平面CDE⊥平面ABCD,平面CDE∩平面ABCD=CD,EO⊥CD,EO⊂平面CDE,∴EO⊥平面ABCD.同理,MF⊥平面ABCD.∴△MFB与△EON均为直角三角形.设正方形ABCD的边长为2,易知EO=√,ON=1,MF=√,BF=√9,则EN=√=2,BM=√√,∴BM≠EN.故选B.答案B8.(2019高考浙江卷)设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P-AC-B的平面角为γ,则()A.βγ,αγB.βα,βγC.βα,γαD.αβ,γβ解析如图G为AC中点,连接VG,点V在底面ABC上的投影为点O,则点P在底面ABC上的投影点D在线段AO上,过点D作DE垂直AC于点E,易得PE∥VG,过点P作PF∥AC交VG于点F,过点D作DH∥AC,交BG于点H,则α=∠BPF,β=∠PBD,γ=∠PED,结合△PFB,△BOH,△POB均为直角三角形,可得cosα==cosβ,所以αβ,在Rt△PEO中,tanγ==tanβ,所以γβ.综上所述,故选B.答案B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.设l为直线,α,β是两个不同的平面,下列命题中错误的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析A中α,β也可相交,A不正确;由垂直同一直线的两平面平行知,B正确;C中,α,β垂直,不正确;D中l与β也可平行或l⊂β,不正确.答案ACD10.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列四个命题,其中真命题是()A.过M点有且只有一条直线与直线AB,B1C1都相交B.过M点有且只有一条直线与直线AB,B1C1都垂直C.过M点有且只有一个平面与直线AB,B1C1都相交D.过M点有且只有一个平面与直线AB,B1C1都平行解析过M点和直线AB的平面与B1C1相交于一点N,只有NM直线与AB相交,即A正确;与AB,B1C1都垂直且过M的只有DD1,即B正确;将过点M的平面CDD1C1绕直线DD1旋转任意非零的角度,所得平面与直线AB,B1C1都相交,故C错误;过点M且与AB,B1C1平行的平面只有过点M,CC1中点BB1中点的一个平面,即D正确.答案ABD11.如图正方体ABCD-A1B1C1D1的棱长为a,以下结论正确的是()A.异面直线A1D与AB1所成的角为60°B.直线A1D与BC1垂直C.直线A1D与BD1平行D.三棱锥A-A1CD的体积为6a3解析A1D与AB1所成角即A1D与DC1成的角,再连接A1C构成等边△A1DC1,即A正确;A1D与BC1成的角即A1D与AD1成的角,由A1D⊥AD1即B正确;由BD1⊥平面A1DC1,∴BD1⊥A1D,即C不正确;三棱锥-三棱锥-a·a2=6,即D正确.答案ABD12.已知空间中两条直线a,b所成的角为0°,P为空间中给定的一个定点,直线l过点P且与直线a和直线b所成的角都是θ(0°θ≤90°),则下列选项正确的是()A.当θ=°时,满足题意的直线l不存在B.当θ=°时,满足题意的直线l有且仅有1条C.当θ=0°时,满足题意的直线l有且仅有2条D.当θ=60°时,满足题意的直线l有且仅有3条解析如图,过点P作a1∥a,b1∥b,则相交直线a1,b1确定一平面α.a1与b1夹角为0°,设直线PA即l与a1,b1均为θ角,如图l绕P转动始终与a1,b1夹角相等,当l在α内为a,b夹角平分线时,θ最小为°,所以AB正确,当θ为0°和60°时直线l都有2条,所以C正确,D错.答案ABC三、填空题:本题共4小题,每小题5分,共20分.13.(2019高考北京卷文数)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.解析将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l⊥α,m∥α,则l⊥m,正确;(2)如果l⊥α,l⊥m,则m∥α,不正确,有可能m在平面α内;(3)如果l⊥m,m∥α,则l⊥α,不正确,有可能l与α斜交,l∥α.答案如果l⊥α,m∥α,则l⊥m14.在正方体ABCD-A'B'C'D'中,过对角线BD'的一个平面交AA'于点E,交CC'于点F,则:①四边形BFD'E一定是平行四边形;②四边形BFD'E有可能是正方形;③四边形BFD'E在底面ABCD内的投影一定是正方形;④平面BFD'E有可能垂直于平面BB'D.以上结论正确的为.(写出所有正确结论的编号)解析如图所示:∵BE和DF,BF和D'E分别是正方体两平行平面被平面BFD'E所截,所以BE∥D'F,D'E∥BF,∴四边形BFD'E为平行四边形.∴①正确.②不正确,当E,F分别为AA',CC'中点时,四边形BFD'E为菱形,设正方体棱长为a,则BF2=D'F2=a2,BD'2=3a2,即BF2+D'F2≠BD'2,四边形BFD'E不可能为正方形.③正确(其射影是正方形ABCD).④正确.当E,F分别是AA',CC'中点时,平面BFD'E⊥平面BB'D.答案①③④15.(2019高考全国Ⅰ卷文数)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为√,那么P到平面ABC的距离为.解析作PD,PE分别垂直于AC,BC,PO⊥平面ABC.连接CO,OD,由题意知CD⊥PD,CD⊥PO,PD∩PO=P,∴CD⊥平面PDO,OD⊂平面PDO,∴CD⊥OD.∵PD=PE=√,PC=2,∴sin∠PCE=sin∠PCD=√,∴∠PCB=∠PCA=60°.又易知PO⊥CO,CO为∠ACB平分线,∴∠OCD=°,∴OD=CD=1,OC=√.又PC=2,∴PO=√-√.答案√16.如图所示,以等腰直角三角形ABC斜边BC上的高AD为折痕.使△ABD和△ACD折成互相垂直的两个平面,则:(1)BD与CD的关系为;(2)∠BAC=.解析(1)AB=AC,AD⊥BC,∴BD⊥AD,CD⊥AD,∴∠BDC为二面角的平面角,∠BDC=90°,∴BD⊥DC.(2)设等腰直角三角形的直角边长为a,则斜边长为√a.∴BD=CD=√a.∴折叠后BC=√(√)(√)=a.∴折叠后△ABC为等边三角形.∴∠BAC=60°.答案(1)BD⊥CD()60°四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图,已知点E,F,G,H分别为正方体ABCD-A1B1C1D1的棱AB,BC,CC1,C1D1的中点,求证:EF,HG,DC三线共点.证明∵点E,F,G,H分别为所在棱的中点,连接BC1,GF,如图.∴GF是△BCC1的中位线,∴GF∥BC1.∵BE∥C1H,且BE=C1H,∴四边形EBC1H是平行四边形.∴EH∥BC1,∴GF∥EH.∴E,F,G,H四点共面.∵GF≠EH,故EF与HG必相交.设EF∩HG=I.∵I∈GH,GH⊂平面CC1D1D,∴I∈平面CC1D1D.同理可证I∈平面ABCD.∴点I在交线DC上.即EF,HG,DC三线共点.18.(12分)(2019高考全国Ⅰ卷文数)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.(1)证明连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=B1C.又因为N为A1D的中点,所以ND=A1D.由题设知A1B1DC,可得B1CA1D,故MEND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.(2)解过点C作C1E的垂线,垂足为点H.由已知可得DE⊥BC,DE⊥C1C,所以DE⊥平面C1CE,故DE⊥CH.从而CH⊥平面C1DE,故CH的长即为C到平面C1DE的距离.由已知可得CE=1,C1C=4,所以C1E=√,故CH=√.从而点C到平面C1DE的距离为√.19.(12分)(2019高考全国Ⅱ卷文数)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.(1)证明由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,所以BE⊥平面EB1C1.(2)解由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=°,故AE=AB=3,AA1=2AE=6.作EF⊥BB1,垂足为点F,则EF⊥平面BB1C1C,且EF=AB=3.所以,四棱锥E-BB1C1C的体积V=×3×6×
本文标题:2020新教材高中数学 第十一章 立体几何初步测评 新人教B版必修第四册
链接地址:https://www.777doc.com/doc-8058855 .html