您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 【四川省成都石室外语学校】2017届度下期开学考试高三理科数学试卷
四川省成都石室外语学校2017届度下期开学考试高三理科数学试卷第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的1.若集合2340Axxx,集合23Bxx,且MAB,则有()A.1MB.1MC.2MD.2M2.在复平面内,复数z满足1i13iz,则z的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知向量1331,,,2222BABC,则ABC()A.30B.45C.60D.1204.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为()参考数据:31.732,sin150.2588,sin7.50.1305.A.12B.24C.48D.965.设,mn是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,//mn,则mn;②若//mn,//n,则//m;③若//mn,n,//m,则;④若mnA,//m,//m,//n,//n,则//.其中真命题的个数是()A.1B.2C.3D.46.已知tanπ2,则21cos2cos()A.3B.25C.52D.37.设31log4a,0.313b,22loglog2c,则()A.bcaB.abcC.cabD.acb8.611xxx的展开式中的一次项系数是()A.5B.14C.20D.359.在ABC△中,1cos8A,4,2ABAC,则A的角平分线AD的长为()A.22B.23C.2D.110.已知某几何体的三视图如图,其中主视图中半圆的直径为2,则该几何体的表面积为()A.46B.52πC.523πD.462π11.如图,1A,2A为椭圆22195xy的长轴的左、右端点,O为坐标原点,S,Q,T为椭圆上不同于1A,2A的三点,直线1QA,2QA,OS,OT围成一个平行四边形OPQR,则22OSOT()A.5B.35C.9D.1412.对二次函数2fxaxbxc(a为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是()A.1是fx的零点B.1是fx的极值点C.3是fx的极值D.点2,8在曲线yfx上第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.实数,xy满足1030330xyxyxy,则1zxy的最大值为________.14.在封闭的直三棱柱111ABCABC内有一个体积为V的球,若ABBC,6AB,8BC,13AA,则V的最大值是________.15.将函数ππsin0,22fxx图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π4个单位长度得到sinyx的图象,则π6f__________.16.已知fx为奇函数,当0x时,ln3fxxx,则曲线yfx在点1,3处的切线方程是________.三、解答题:本大题6题,共70分.17.(本题满分12分)已知数列na的前n项和为nS,且12nnSn,又数列nb满足nnabn(Ⅰ)求数列na的通项公式;(Ⅱ)当为何值时,数列nb是等比数列?并证此时数列nb的前n项和2nT.18.(本题满分12分)第31届夏季奥林匹克运动会将于2016年8月5日~21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).第30届伦敦第29届北京第28届雅典第27届悉尼第16届亚特兰大中国3851322816俄罗斯2423273226(1)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);(2)甲、乙、丙三人竞猜2016年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为45,丙猜中国代表团的概率为35,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.19.(本题满分12分)如图,在四棱柱1111ABCDABCD中,侧面11AADD底面ABCD,112DADD,底面ABCD为直角梯形,其中//BCAD,ABAD,222,ADABBCO为AD中点.(1)求证:1//AO平面1ABC;(2)求锐二面角11ACDC的余弦值.20.(本题满分12分)如图所示,已知抛物线2:4Cxy,过点0,2M任作一直线与C相交于,AB两点,过点B作y轴的平行线与直线AO相交于点(DO为坐标原点).(1)证明:动点D在定直线上;(2)作C的任意一条切线l(不含x轴),与直线2y相交于点1N与(1)中的定直线相交于点2N.证明:2221MNMN为定值,并求此定值.21.(本题满分12分)已知函数ln,exfxaxxFxax,其中0x,0a.(1)若fx和Fx在区间0,ln3上具有相同的单调性,求实数a的取值范围;(2)若21,ea,且函数1e2agxxaxfx的最小值为M,求M的最小值.22.(本题满分12分)在极坐标系中,曲线C的方程为2cos29,点π23,6P.以极点O为原点,极轴为x轴的正半轴建立直角坐标系.(1)求直线OP的参数方程和曲线C的直角坐标方程;(2)若直线OP与曲线C交于A,B两点,求11PAPB的值.
本文标题:【四川省成都石室外语学校】2017届度下期开学考试高三理科数学试卷
链接地址:https://www.777doc.com/doc-8122804 .html