您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 吉林省延边州2016届高考数学模拟试卷-理(含解析)
2016年吉林省延边州高考数学模拟试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填写在答题卡上.1.若M⊆{a1,a2,a3,a4,a5},且M∩{a1,a2,a3}={a1,a2},则满足上述要求的集合M的个数是()A.1B.2C.3D.42.复数的共轭复数是()A.1+iB.﹣1+iC.1﹣iD.﹣1﹣i3.若向量=(3,4),且存在实数x,y,使得=x,则可以是()A.=(0,0),=(﹣1,2)B.=(﹣1,3),=(2,﹣6)C.=(﹣1,2),=(3,﹣1)D.=(﹣,1),=(1,﹣2)4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.B.C.D.45.在二项式的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为()A.﹣32B.0C.32D.16.若x,y满足约束条件则z=3x+2y的取值范围()A.[,5]B.[,5]C.[,4]D.[,4]7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是()A.2B.3C.9D.278.在△ABC中,若a2﹣b2=bc,且=2,则角A=()A.B.C.D.9.下列四种说法中,正确的个数有()①命题“∀x∈R,均有x2﹣3x﹣2≥0”的否定是:“∃x0∈R,使得”;②∃m∈R,使是幂函数,且在(0,+∞)上是单调递增;③不过原点(0,0)的直线方程都可以表示成;④回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为=1.23x+0.08.A.3个B.2个C.1个D.0个10.如图所示,M,N是函数y=2sin(ωx+ϕ)(ω>0)图象与x轴的交点,点P在M,N之间的图象上运动,当△MPN面积最大时,PM⊥PN,则ω=()A.B.C.D.811.已知抛物线y2=4px(p>0)与双曲线有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为()A.B.C.D.12.已知函数f(x)=,则方程f(x)=ax恰有两个不同实数根时,实数a的取值范围是()(注:e为自然对数的底数)A.(0,)B.[,]C.(0,)D.[,e]二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上.13.如图所示,在一个边长为1的正方形AOBC内,曲线y=x2和曲线y=围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是.14.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有种(用数字作答).15.三棱锥P﹣ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P﹣ABC的外接球的表面积为.16.给出下列命题:①已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤2)=0.4,则P(ξ>2)=0.3;②f(x﹣1)是偶函数,且在(0,+∞)上单调递增,则;③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是;④已知a>0,b>0,函数y=2aex+b的图象过点(0,1),则的最小值是.其中正确命题的序号是(把你认为正确的序号都填上).三、解答题:本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.数列{an}是首项a1=4的等比数列,sn为其前n项和,且S3,S2,S4成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn=log2|an|,设Tn为数列{}的前n项和,求证Tn<.18.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图:(Ⅰ)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,根据表格中所给数据,分别求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?经济损失不超过4000元经济损失超过4000元合计捐款超过500元a=30b捐款不超过500元cd=6合计P(K2≥k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828附:临界值表参考公式:,.19.如图,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O是AE的中点,以AE为折痕向上折起,使D为D′,且D′B=D′C.(Ⅰ)求证:平面D′AE⊥平面ABCE;(Ⅱ)求CD′与平面ABD′所成角的正弦值.20.已知点P为y轴上的动点,点M为x轴上的动点,点F(1,0)为定点,且满足=,=0.(Ⅰ)求动点N的轨迹E的方程;(Ⅱ)过点F且斜率为k的直线l与曲线E交于两点A,B,试判断在x轴上是否存在点C,使得|CA|2+|CB|2=|AB|2成立,请说明理由.21.设函数f(x)=ax﹣sinx,x∈[0,π].(1)当a=时,求f(x)的单调区间;(2)若不等式f(x)≤1﹣cosx恒成立,求实数a的取值范围.请考生在题(22)(23)(24)中任选一题作答,如果多做,则按所做的第一题计分.做题时用2B铅笔在答题卡上把所选题目对应的题号涂黑.[选修4-1:几何证明选讲]22.如图所示,已知ΘO1和ΘO2相交于A,B两点.过点A作ΘO1的切线交ΘO2于点C,过点B作两圆的割线,分别交ΘO1,ΘO2于点D,E,DE与AC相交于点P,(Ⅰ)求证:PE•AD=PD•CE;(Ⅱ)若AD是ΘO2的切线,且PA=6,PC=2,BD=9,求AD的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,直线l的参数方程为(t为参数),若以原点O为极点,x轴正半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4cosθ,设M是圆C上任一点,连结OM并延长到Q,使|OM|=|MQ|.(Ⅰ)求点Q轨迹的直角坐标方程;(Ⅱ)若直线l与点Q轨迹相交于A,B两点,点P的直角坐标为(0,2),求|PA|+|PB|的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f().2016年吉林省延边州高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填写在答题卡上.1.若M⊆{a1,a2,a3,a4,a5},且M∩{a1,a2,a3}={a1,a2},则满足上述要求的集合M的个数是()A.1B.2C.3D.4【考点】子集与交集、并集运算的转换.【分析】根据交集的关系判断出a1,a2是集合M中的元素,a3不是M的元素,再由子集的关系写出所有满足条件的M.【解答】解:∵M∩{a1,a2,a3}={a1,a2},∴a1,a2∈M且a3∉M,∵M⊆{a1,a2,a3,a4,a5},∴M={a1,a2,a4,a5}或{a1,a2,a4}或{a1,a2,a5}或{a1,a2},故选D.【点评】本题考查了交集的性质,以及子集的定义的应用,属于基础题.2.复数的共轭复数是()A.1+iB.﹣1+iC.1﹣iD.﹣1﹣i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】直接利用复数代数形式的乘除运算化简,然后求其共轭得答案.【解答】解:∵,∴,故选:D.【点评】本题考查了复数代数形式的乘除运算,是基础的计算题.3.若向量=(3,4),且存在实数x,y,使得=x,则可以是()A.=(0,0),=(﹣1,2)B.=(﹣1,3),=(2,﹣6)C.=(﹣1,2),=(3,﹣1)D.=(﹣,1),=(1,﹣2)【考点】平面向量的基本定理及其意义.【专题】平面向量及应用.【分析】由平面向量基本定理便知,与不共线,这样根据共面向量基本定理容易判断A,B,D中的向量与共线,而根据共线向量的坐标关系可判断C中的不共线,从而便得出正确选项为C.【解答】解:根据平面向量基本定理知:不共线;A.,共线;B.,共线;C.,∴﹣1×(﹣1)﹣2×3=﹣5≠0,∴与不共线,即该选项正确;D.,∴共线.故选:C.【点评】考查共面向量基本定理,平面向量基本定理:,其中要求不共线,以及共线向量的坐标关系.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.B.C.D.4【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】三棱柱的侧视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中做出底边上的高的长度,得到结果.【解答】解:由题意知三棱柱的侧视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是2×=,∴侧视图的面积是2.故选A.【点评】本题考查简单的空间图形三视图,考查三视图的面积的计算,考查通过原图观察三视图的大小,本题是一个易错题,易错点在侧视图的宽,错成底边的边长.5.在二项式的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为()A.﹣32B.0C.32D.1【考点】二项式系数的性质.【专题】转化思想;定义法;二项式定理.【分析】由二项式系数的性质求出n的值,再令x=1求出展开式中各项系数的和.【解答】解:二项式的展开式中,所有二项式系数的和是32,∴2n=32,解得n=5;令x=1,可得展开式中各项系数的和为(3×12﹣)5=32.故选:C.【点评】本题考查了二项式系数和与展开式中各项系数的和的计算问题,是基础题.6.若x,y满足约束条件则z=3x+2y的取值范围()A.[,5]B.[,5]C.[,4]D.[,4]【考点】简单线性规划.【专题】计算题;作图题;不等式的解法及应用.【分析】由题意作出其平面区域,令z=3x+2y,从而可化得y=﹣x+,再解出C,D两点的坐标,由的几何意义及图象求解即可.【解答】解:由题意作出其平面区域,令z=3x+2y,则y=﹣x+;由解得,x=y=;故C(,);由解得,x=y=1;故D(1,1);结合图象及的几何意义知,3×+2×≤3x+2y≤3×1+2×1;即≤3x+2y≤5;故选A.【点评】本题考查了线性规划的应用及学生的作图用图能力,属于中档题.7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是()A.2B.3C.9D.27【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的R,P,Q的值,当Q=0时,满足条件Q=0,退出循环,输出P的值为3.【解答】解:模拟执行程序,可得P=153,Q=63不满足条件Q=0,R=27,P=63,Q=27不满足条件Q=0,R=9,P=27,Q=9不满足条件Q=0,R=0,P=9,Q=0满足条件Q=0,退出循环,输出P的值为9.故选:C.【点评】本题主要考查了程序框
本文标题:吉林省延边州2016届高考数学模拟试卷-理(含解析)
链接地址:https://www.777doc.com/doc-8126000 .html