您好,欢迎访问三七文档
§7.5合情推理与演绎推理第七章不等式、推理与证明、数学归纳法KAOQINGKAOXIANGFENXI考情考向分析以理解类比推理、归纳推理和演绎推理的推理方法为主,常以演绎推理的方法根据几个人的不同说法作出推理判断进行命题.注重培养学生的推理能力;在高考中以填空题的形式进行考查,属于中低档题.NEIRONGSUOYIN内容索引基础知识自主学习题型分类深度剖析课时作业1基础知识自主学习PARTONE知识梳理1.合情推理(1)归纳推理①定义:从个别事实中推演出一般性的结论,称为归纳推理(简称归纳法).②特点:归纳推理是由_____到整体、由_____到一般的推理.(2)类比推理①定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理(简称类比法).②特点:类比推理是由_____到_____的推理.ZHISHISHULI部分个别特殊特殊(3)合情推理合情推理是根据已有的事实、正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳推理和类比推理都是数学活动中常用的合情推理.2.演绎推理(1)演绎推理由一般性的命题推演出特殊性命题的推理方法称为演绎推理.简言之,演绎推理是由_____到_____的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——一般性的原理;②小前提——特殊对象;③结论——揭示了一般原理与特殊对象的内在联系.一般特殊【概念方法微思考】1.合情推理所得结论一定是正确的吗?提示合情推理所得结论是猜想,不一定正确,用演绎推理能够证明的猜想是正确的,否则不正确.2.合情推理对我们学习数学有什么帮助?提示合情推理常常能帮助我们猜测和发现结论,证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.3.“三段论”是演绎推理的一般模式,包括大前提,小前提,结论,在用其进行推理时,大前提是否可以省略?提示大前提是已知的一般原理,当已知问题背景很清楚的时候,大前提可以省略.基础自测JICHUZICE题组一思考辨析1234561.判断下列结论是否正确(请在括号中打“√”或“×”)(1)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.()(2)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.()(3)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.()(4)一个数列的前三项是1,2,3,那么这个数列的通项公式是an=n(n∈N*).()(5)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()√×√××题组二教材改编1234562.[P64例1]已知在数列{an}中,a1=1,当n≥2时,an=an-1+2n-1,依次计算a2,a3,a4后,猜想an的表达式是______.an=n2解析a2=a1+3=4,a3=a2+5=9,a4=a3+7=16,a1=12,a2=22,a3=32,a4=42,猜想an=n2.1234563.[P68T4]在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19-n(n19,n∈N*)成立,类比上述性质,在等比数列{bn}中,若b9=1,则存在的等式为________________________________.b1b2…bn=b1b2…b17-n(n17,n∈N*)b29解析利用类比推理,借助等比数列的性质,=b1+n·b17-n,可知存在的等式为b1b2…bn=b1b2…b17-n(n17,n∈N*).题组三易错自纠1234564.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理错误的原因是___________.小前提错误解析f(x)=sin(x2+1)不是正弦函数,所以小前提错误.1234565.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③垂直于同一个平面的两个平面互相平行;④垂直于同一条直线的两个平面互相平行.则正确的结论是______.(填序号)①④解析显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交.1234566.观察下列关系式:1+x=1+x;1+x2≥1+2x,1+x3≥1+3x,……,由此规律,得到的第n个关系式为_______________.(1+x)n≥1+nx解析左边为等比数列,右边为等差数列,所以第n个关系式为(1+x)n≥1+nx(n∈N*).2题型分类深度剖析PARTTWO题型一归纳推理多维探究命题点1与数式有关的的推理例1(1)《周易》历来被人们视为儒家经典之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映了中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当做数字“1”,把阴爻“”当做数字“0”,则八卦代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113解析由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17.以此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是___.17(2)观察下列式子:1+12232,1+122+13253,1+122+132+14274,…,根据以上式子可以猜想:1+122+132+…+120192________.40372019解析由题意得,不等式右边分数的分母是左边最后一个分数的分母的底数,所以猜想的分母是2019,分子组成了一个以3为首项,2为公差的等差数列,所以a2018=3+(2018-1)×2=4037.命题点2与图形变化有关的推理例2分形理论是当今世界十分风靡和活跃的新理论、新学科.其中,把部分与整体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象、图象或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律依次在一个黑色三角形内去掉小三角形,则当n=6时,该黑色三角形内去掉小三角形个数为_____.364思维升华归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解.(2)与式子有关的推理.观察每个式子的特点,注意是纵向看,找到规律后可解.(3)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.跟踪训练1某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为____.55解析由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55.题型二类比推理师生共研例3(1)已知{an}为等差数列,a1010=5,a1+a2+a3+…+a2019=5×2019.若{bn}为等比数列,b1010=5,则{bn}类似的结论是___________________.b1b2b3…b2019=52019(2)祖暅是我国古代的伟大科学家,他在5世纪末提出祖暅:“幂势即同,则积不容异”,意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.祖暅原理常用来由已知几何体的体积推导未知几何体的体积,例如由圆锥和圆柱的体积推导半球体的体积,其示意图如图所示,其中图(1)是一个半径为R的半球体,图(2)是从圆柱中挖去一个圆锥所得到的几何体.(圆柱和圆锥的底面半径和高均为R)利用类似的方法,可以计算抛物体的体积:在xOy坐标系中,设抛物线C的方程为y=1-x2(-1≤x≤1),将曲线C围绕y轴旋转,得到的旋转体称为抛物体.π2利用祖暅原理可计算得该抛物体的体积为___.思维升华类比推理常见的情形有:平面与空间类比;低维与高维类比;等差与等比数列类比;运算类比(加与乘,乘与乘方,减与除,除与开方).数的运算与向量运算类比;圆锥曲线间的类比等.跟踪训练2在平面上,设ha,hb,hc是△ABC三条边上的高,P为三角形内任一点,P到相应三边的距离分别为Pa,Pb,Pc,我们可以得到结论:Paha+Pbhb+Pchc=1.Paha+Pbhb+Pchc+Pdhd=1于是可以得出结论:Paha+Pbhb+Pchc+Pdhd=1.解析设ha,hb,hc,hd分别是三棱锥A-BCD四个面上的高,P为三棱锥A-BCD内任一点,P到相应四个面的距离分别为Pa,Pb,Pc,Pd,把它类比到空间中,则三棱锥中的类似结论为____________________.题型三演绎推理师生共研例4设同时满足条件:①bn+bn+22≤bn+1(n∈N*);②bn≤M(n∈N*,M是与n无关的常数)的无穷数列{bn}叫“特界”数列.(1)若数列{an}为等差数列,Sn是其前n项和,a3=4,S3=18,求Sn;解得a1=8,d=-2,Sn=na1+nn-12d=-n2+9n.解设等差数列{an}的公差为d,则a1+2d=4,3a1+3d=18,(2)判断(1)中的数列{Sn}是否为“特界”数列,并说明理由.由Sn+Sn+22-Sn+1=Sn+2-Sn+1-Sn+1-Sn2=an+2-an+12=d2=-10,解{Sn}为“特界”数列.理由如下:而Sn=-n2+9n=-n-922+814(n∈N*),故数列{Sn}满足条件①;得Sn+Sn+22Sn+1,则当n=4或5时,Sn有最大值20,即Sn≤20,故数列{Sn}满足条件②.综上,数列{Sn}是“特界”数列.思维升华演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题,应当首先明确什么是大前提和小前提,若前提是显然的,则可以省略.跟踪训练3某市为了缓解交通压力,实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A,B,C,D,E五辆车,保证每天至少有四辆车可以上路行驶.已知E车周四限行,B车昨天限行,从今天算起,A,C两车连续四天都能上路行驶,E车明天可以上路,由此可知今天是星期____.四解析因为每天至少有四辆车可以上路行驶,E车明天可以上路,E车周四限行,所以今天不是周三;因为B车昨天限行,所以今天不是周一,不是周五,也不是周日;因为A,C两车连续四天都能上路行驶,所以今天不是周二和周六,所以今天是周四.3课时作业PARTTHREE基础保分练123456789101112131415161.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是_______________________________________.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2解析由题中式子可以归纳:等式左边为连续自然数的和,有2n-1项,且第一项为n,则最后一项为3n-2,等式右边均为2n-1的平方.所以第16行第2个数为a122=12×122-1=1243.1234567891011121314151613151719111113115117119……2.观察下列三角形数阵:11243解析前15行共有15×15+12=120(个)数,按照以上排列的规律,第16行从左到右的第2个数为_____.12345678910111213141
本文标题:(江苏专用)2020版高考数学大一轮复习 第七章 不等式、推理与证明、数学归纳法 7.5 合情推理与
链接地址:https://www.777doc.com/doc-8137160 .html