您好,欢迎访问三七文档
微专题二数列通项公式的常用求法第六章数列一、累加法、累乘法例1已知数列{an}满足an+1=an+2·3n+1,a1=3,则数列{an}的通项公式为_____________.an=3n+n-1例2设数列{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),则它的通项公式是an=___.1n[(n+1)an+1-nan](an+1+an)=0,解析原递推式可化为:∵an+1+an0,∴an+1an=nn+1,则a2a1=12,a3a2=23,a4a3=34,…,anan-1=n-1n,累乘可得ana1=1n,又a1=1,∴an=1n(n=1时也成立).故an=4-1n(n=1时也成立).跟踪训练1(1)在数列{an}中,a1=3,an+1=an+1nn+1,则数列{an}的通项公式为an=_______.4-1nan+1=an+1n-1n+1,解析原递推式可化为则a2=a1+11-12,a3=a2+12-13,a4=a3+13-14,…,an=an-1+1n-1-1n,累加得an=a1+1-1n.(2)在数列{an}中,a1=1,an+1=2n·an,则an=______.解析a1=1,a2=2a1,a3=22a2,…,an=2n-1an-1,(1)22nn(1)22nn(1)22nn故an=.累乘得an=2·22·23·…·2n-1=,当n=1时也成立,例3已知数列{an},其中a1=43,a2=139,且当n≥3时,an-an-1=13(an-1-an-2),求通项公式an.二、换元法跟踪训练2已知数列{an}中,a1=1,a2=2,当n≥3时,an-2an-1+an-2=1,求通项公式an.∴an-1=12n(n-1),∴an=n2-n+22(n=1时也成立).解当n≥3时,(an-an-1)-(an-1-an-2)=1,令bn-1=an-an-1,∴bn-1-bn-2=1,∴{bn}是等差数列,其中b1=a2-a1=1,公差为1,∴bn=n,∴b1+b2+…+bn-1=a2-a1+a3-a2+…+an-an-1=an-1,三、构造等差数列求通项例4已知数列{an}满足an+1=3an+2·3n+1,a1=3,求数列{an}的通项公式.得an+13n+1=an3n+2,∴an3n是以a13=1为首项,以2为公差的等差数列,∴an3n=1+(n-1)×2=2n-1,解an+1=3an+2·3n+1,两边同除以3n+1,∴an=(2n-1)·3n.例5若数列{an}中,a1=2且an=3+a2n-1(n≥2),求它的通项公式an.解将an=3+a2n-1两边平方整理,得a2n-a2n-1=3.数列{a2n}是以a21=4为首项,3为公差的等差数列.故a2n=a21+(n-1)×3=3n+1.因为an0,所以an=3n+1.例6已知数列{an}中,a1=1,且当n≥2时,an=an-12an-1+1,求通项公式an.解将an=an-12an-1+1两边取倒数,得1an-1an-1=2,这说明1an是一个等差数列,首项是1a1=1,公差为2,所以1an=1+(n-1)×2=2n-1,即an=12n-1.①证明:数列an3n是等差数列;跟踪训练3(1)已知数列{an}满足an+1=3an+3n,且a1=1.得an+13n+1=an3n+13,即an+13n+1-an3n=13.证明由an+1=3an+3n,两边同时除以3n+1,由等差数列的定义知,数列an3n是以a13=13为首项,13为公差的等差数列.②求数列{an}的通项公式.解由(1)知an3n=13+(n-1)×13=n3,故an=n·3n-1,n∈N*.(2)已知数列{an}中,a1=1,an-1-an=anan-1(n≥2,n∈N*),则a10=____.110∴1an-1an-1=1(n≥2,n∈N*),解析易知an≠0,∵数列{an}满足an-1-an=anan-1(n≥2,n∈N*),故数列1an是等差数列,且公差为1,首项为1,∴1a10=1+9=10,∴a10=110.四、构造等比数列求通项例7已知数列{an}满足a1=1,an+1=3an+2,求数列{an}的通项公式.解由an+1=3an+2,可得an+1+1=3(an+1),又a1+1=2,∴{an+1}是以2为首项,以3为公比的等比数列,∴an+1=2·3n-1,∴an=2·3n-1-1.例8在数列{an}中,a1=-1,an+1=2an+4·3n-1,求通项公式an.解原递推式可化为an+1+λ·3n=2(an+λ·3n-1),①比较系数得λ=-4,①式为:an+1-4·3n=2(an-4·3n-1).则数列{an-4·3n-1}是一个等比数列,其首项为a1-4·31-1=-5,公比是2.∴an-4·3n-1=-5·2n-1,即an=4·3n-1-5·2n-1.例9数列{an}满足a1=2,an+1=a2n(an0,n∈N*),则an=________.解析因为数列{an}满足a1=2,an+1=a2n(an0,n∈N*),又a1=2,所以log2a1=log22=1.故数列{log2an}是首项为1,公比为2的等比数列.所以log2an=2n-1,即an=.所以log2an+1=2log2an,即log2an+1log2an=2.2122n2122n跟踪训练4(1)若数列{an}中,a1=3且an+1=a2n(n是正整数),则它的通项公式是an=______.解析由题意知an0,将an+1=a2n两边取对数,得lgan+1=2lgan,即lgan+1lgan=2,又lga1=lg3,所以数列{lgan}是以lg3为首项,公比为2的等比数列,lgan=lga1·2n-1=,故an=.12lg3n123n123n(2)数列{an}中,a1=1,an+1=an3+4an,则an=________.13n-2解析由已知可得1an+1=3+4anan=3an+4,∴1an+1+2=3an+6=31an+2,又1a1+2=3,∴1an+2是以3为首项,以3为公比的等比数列,∴1an+2=3n,∴an=13n-2.(3)数列{an}中,已知a1=1,an+1=-2an+3n,则an=________________.15·3n+25·(-2)n-1比较系数可得λ=-15,解析由已知可设an+1+λ·3n+1=-2(an+λ·3n),即an+1-15·3n+1=-2an-15·3n,又a1-35=25,∴an-15·3n是以25为首项,-2为公比的等比数列,∴an-15·3n=25·(-2)n-1,∴an=15·3n+25·(-2)n-1.五、归纳推理法例10(1)设Sn是数列{an}的前n项和,且a1=-1,an+1=Sn+1Sn,则Sn=____.-1n(2)已知数列{an}满足an+1=2an,0≤an12,2an-1,12≤an1.若a1=35,则a2018=____.15解析因为a1=35,所以数列{an}是以4为周期的数列,根据题意得a2=15,a3=25,a4=45,a5=35,又2018=504×4+2,所以a2018=a2=15.跟踪训练5(1)在数列{an}中,an+1+(-1)nan=2n-1,则数列{an}的前12项和等于____.78解析由题意,当n为奇数时,an+1-an=2n-1,an+2+an+1=2n+1,两式相减得an+2+an=2;当n为偶数时,an+1+an=2n-1,an+2-an+1=2n+1,两式相加得an+2+an=4n.所以S12=(a1+a3+…+a11)+(a2+a4+…+a12)=2×3+4(2+6+10)=78.(2)已知数列{an}满足an+2=an+1-an,且a1=2,a2=3,Sn为数列{an}的前n项和,则S2018的值为___.5(3)用{x}表示不小于x的最小整数,例如{2}=2,{1.2}=2,{-1.1}=-1.已知数列{an}满足a1=1,an+1=a2n+an,则1a1+1+1a2+1+…+1a2018+1=___.1
本文标题:(江苏专用)2020版高考数学大一轮复习 第六章 数列 微专题二 数列通项公式的常用求法课件
链接地址:https://www.777doc.com/doc-8137168 .html