您好,欢迎访问三七文档
§8.2直线、平面平行的判定与性质第八章立体几何KAOQINGKAOXIANGFENXI考情考向分析直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.NEIRONGSUOYIN内容索引基础知识自主学习题型分类深度剖析课时作业1基础知识自主学习PARTONE知识梳理1.线面平行的判定定理和性质定理ZHISHISHULI文字语言图形语言符号语言判定定理如果平面外一条直线和____________的一条直线平行,那么这条直线和这个平面平行(简记为“线线平行⇒线面平行”)⇒l∥αl∥aa⊂αl⊄α这个平面内性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行(简记为“线面平行⇒线线平行”)⇒l∥bl∥al⊂βα∩β=b________________________2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果一个平面内有两条___________都平行于另一个平面,那么这两个平面平行(简记为“线面平行⇒面面平行”)⇒α∥β性质定理如果两个平行平面同时和第三个平面,那么所得的两条平行⇒a∥b________________________________________________________________α∥βα∩γ=aβ∩γ=bα∥βb∥βa∩b=Pa⊂αb⊂α相交直线相交交线1.一条直线与一个平面平行,那么它与平面内的所有直线都平行吗?提示不都平行.该平面内的直线有两类,一类与该直线平行,一类与该直线异面.2.一个平面内的两条相交直线与另一个平面内的两条相交直线分别对应平行,那么这两个平面平行吗?提示平行.可以转化为“一个平面内的两条相交直线与另一个平面平行”,这就是面面平行的判定定理.【概念方法微思考】1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)平行于同一条直线的两个平面平行.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()(5)若直线a与平面α内无数条直线平行,则a∥α.()基础自测JICHUZICE题组一思考辨析×××√12345×题组二教材改编123452.[P44习题T1]下面给出了几个结论:①若一个平面内的一条直线平行于另一个平面,则这两个平面平行;②若一个平面内任何一条直线都平行于另一个平面,则这两个平面平行;③若两个平面没有公共点,则这两个平面平行;④平行于同一条直线的两个平面必平行.其中,结论正确的是______.(请把正确结论的序号都填上)②③3.[P36习题T3]如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面ACE的位置关系为______.平行12345题组三易错自纠123454.(2018·盐城模拟)已知α,β为两个不同的平面,m,n为两条不同的直线,下列命题中正确的是____.(填上所有正确命题的序号)①若α∥β,m⊂α,则m∥β;②若m∥α,n⊂α,则m∥n;③若α⊥β,α∩β=n,m⊥n,则m⊥β.①解析①这是面面平行的性质,正确;②只能确定m,n没有公共点,有可能异面,错误;③当m⊂α时,才能保证m⊥β,错误.平行四边形123455.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为____________.解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.2题型分类深度剖析PARTTWO题型一直线与平面平行的判定与性质多维探究命题点1直线与平面平行的判定例1如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.求证:GF∥平面ADE.命题点2直线与平面平行的性质例2在如图所示的几何体中,四边形ABCD是正方形,PA⊥平面ABCD,E,F分别是线段AD,PB的中点,PA=AB=1.(1)证明:EF∥平面PDC;(2)求点F到平面PDC的距离.思维升华判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用面面平行的性质(α∥β,a⊂α⇒a∥β).(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(1)求证:EF∥平面PAD;跟踪训练1如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2,四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.点E,F分别为侧棱PB,PC上的点,且PEPB=PFPC=λ(λ≠0).证明∵PEPB=PFPC=λ(λ≠0),∴EF∥BC.∵BC∥AD,∴EF∥AD.又EF⊄平面PAD,AD⊂平面PAD,∴EF∥平面PAD.(2)当λ=12时,求点D到平面AFB的距离.例3如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;题型二平面与平面平行的判定与性质师生共研证明∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)平面EFA1∥平面BCHG.证明∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1∥AB且A1B1=AB,∴A1G∥EB,A1G=EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.又∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EFA1,∴平面EFA1∥平面BCHG.引申探究1.在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.2.在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求ADDC的值.思维升华证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理.(3)垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.跟踪训练2如图,在多面体ABCDEF中,四边形ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,M为棱AE的中点.(1)求证:平面BDM∥平面EFC;(2)若AB=1,BF=2,求三棱锥A-CEF的体积.题型三平行关系的综合应用师生共研例4如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH,CD∥平面EFGH;证明∵四边形EFGH为平行四边形,∴EF∥HG.∵HG⊂平面ABD,EF⊄平面ABD,∴EF∥平面ABD.又∵EF⊂平面ABC,平面ABD∩平面ABC=AB,∴EF∥AB,又∵AB⊄平面EFGH,EF⊂平面EFGH,∴AB∥平面EFGH.同理可证,CD∥平面EFGH.(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.解设EF=x(0x4),∵EF∥AB,FG∥CD,∴CFCB=x4,则FG6=BFBC=BC-CFBC=1-x4.∴FG=6-32x.∵四边形EFGH为平行四边形,∴四边形EFGH的周长l=2x+6-32x=12-x.又∵0x4,∴8l12,即四边形EFGH周长的取值范围是(8,12).思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.跟踪训练3如图,E是正方体ABCD-A1B1C1D1的棱DD1的中点,过A,C,E三点作平面α与正方体的面相交.(1)画出平面α与正方体ABCD-A1B1C1D1各面的交线;(2)求证:BD1∥平面α.3课时作业PARTTHREE基础保分练12345678910111213141516l∥α或l⊂α1.一条直线l上有相异的三个点A,B,C到平面α的距离相等,那么直线l与平面α的位置关系是__________.解析当l∥α时,直线l上任意点到α的距离都相等;当l⊂α时,直线l上所有的点到α的距离都是0;当l⊥α时,直线l上有两个点到α的距离相等;当l与α斜交时,也只能有两个点到α的距离相等.12345678910111213141516④2.下列命题中正确的是_____.(填序号)①若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面;②若直线a和平面α满足a∥α,那么a与α内的任何直线平行;③平行于同一条直线的两个平面平行;④若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α.解析①中,a可以在过b的平面内;②中,a与α内的直线也可能异面;③中,两平面可相交;④中,由直线与平面平行的判定定理知b∥α,正确.12345678910111213141516平行3.如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是______.解析在三棱柱ABC-A1B1C1中,AB∥A1B1.∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC.∵过A1B1的平面与平面ABC交于DE,∴DE∥A1B1,∴DE∥AB.12345678910111213141516③④4.下列命题正确的是______.(填序号)①若直线a不在平面α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内任何一条直线都没有公共点;④平行于同一平面的两条直线可以相交.解析当a∩α=A时,a⊄α,故①错误;直线l与α相交时,l上有无数个点不在α内,故②错误;l∥α,l与α无公共点,所以l与α内任意一条直线都无公共点,故③正确;长方体中A1C1与B1D1都与平面ABCD平行,故④正确.解析如图设平面α截三棱锥所得的四边形EFGH是平行四边形,则EF∥GH,EF⊄平面BCD,GH⊂平面BCD,所以EF∥平面BCD,又EF⊂平面ACD,平面ACD∩平面BCD=CD,则EF∥CD,EF⊂平面EFGH,CD⊄平面EFGH,则CD∥平面EFGH,同理AB∥平面EFGH,所以该三棱锥与平面α平行的棱有2条.1234567891011121314151625.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有____条.12345678910111213141516①6.(2018·南京、盐城模拟)已知α,β为两个不重合的平面,m,n为两条不同的直线,则下列命题正确的是____.(填序号)①若α∥β,m⊂α,则m∥β;②若m∥α,n⊂α,则m∥n;③若m∥α,n∥β,m∥n,则α∥β;④若α∥β,m∥α,n∥β,则m∥n.解析②只能确定m,n没有公共点,有可能异面,错误;③α与β可能相交;④m与n也可能异面或相交,故只有①正确.12345678910111213141516②7.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊂α,n∥α,则m∥n;②若β∥γ,α∥γ,则α∥β;③若α∩β=n,m∥n,m∥α,则m∥β;④若m∥α,n∥β,m∥n,则α∥β.其中是真命题的是____.(填序号)解析①m∥n
本文标题:(江苏专用)2020版高考数学大一轮复习 第八章 立体几何 8.2 直线、平面平行的判定与性质课件
链接地址:https://www.777doc.com/doc-8137316 .html