您好,欢迎访问三七文档
18.1.2平行四边形判定第十八章平行四边形导入新课讲授新课当堂练习课堂小结第1课时平行四边形的判定(1)情境引入学习目标1.平行四边形判定方法的探究.(重点)2.平行四边形判定方法的理解和灵活应用.(难点)导入新课学习了平行四边形之后,小明回家用细木棒钉制了一个平行四边形.第二天,小明拿着自己动手做的平行四边形向同学们展示.小辉却问:你凭什么确定这四边形就是平行四边形呢?大家都困惑了……讲授新课平行四边形的判定定理1一小强提议说:我们可以度量它的边,如果它的两组对边分别相等,那么它就是一个平行四边形.ABCD你能根据平行四边形的定义证明它们吗?已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.ABCD连结AC,在△ABC和△CDA中,AB=CD(已知)BC=DA(已知)AC=CA(公共边)∴△ABC≌△CDA(SSS)∴∠1=∠4,∠2=∠3∴AB∥CD,AD∥BC∴四边形ABCD是平行四边形。证明:1423判定定理1:两组对边分别相等的四边形是平行四边形.小伟提议说:我们可以度量它的角,如果它的两组对角分别相等,那么它就是一个平行四边形.ABCD你能根据平行四边形的定义证明它们吗?平行四边形的判定定理2二已知:四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.ABCD又∵∠A=∠C,∠B=∠D∵∠A+∠C+∠B+∠D=360°∴2∠A+2∠B=360°即∠A+∠B=180°∴AD∥BC∴四边形ABCD是平行四边形.同理得AB∥CD证明:判定定理2:两组对角分别相等的四边形是平行四边形平行四边形的判定定理3三小丽却说:“我可以不用任何作图工具,只要两条细绳就能判断它是不是平行四边形.”只见小丽用两条细绳做四边形的对角线,并在两条对角线的交点处作了个记号.然后分别把两条对角线沿记号点对折,发现它们被记号的点分成的两段都能重合,小丽高兴地说:“这的确是个平行四边形!”你能用平行四边形的定义进行证明吗?ABCDABCDO已知:四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△AOB和△COD中,OA=OC(已知)OB=OD(已知)∠AOB=∠COD(对顶角相等)∴△AOB≌△COD(SAS)∴∠BAO=∠OCD,∠ABO=∠CDO.∴AB∥CD,AD∥BC∴四边形ABCD是平行四边形.判定定理3:对角线互相平分的四边形是平行四边形归纳小结判定定理1定理2定理3文字语言图形语言符号语言两组对边分别相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形对角线互相平分的四边形是平行四边形平行四边形判定定理ABCD∵AB=CD,AD=BC,∴四边形ABCD是ABCDABCD∵∠A=∠C,∠B=∠D,∴四边形ABCD是ABCDABCDO∵AO=CO,BO=DO,∴四边形ABCD是ABCD例1填空:如图在四边形ABCD中(1)若AB//CD,补充条件,使四边形ABCD为平行四边形;(2)若AB=CD,补充条件,使四边形ABCD为平行四边形;(3)若对角线AC、BD交于点O,OA=OC=3,OB=5,补充条件,使四边形ABCD为平行四边形.解题方法:紧扣平行四边形的判定方法补上缺失条件.AD//BCAD=BCOD=5BODAC典例精析(4)如图,□ABCD的对角线AC,BD相交于点O,E,F是AC上的两点,补充条件:,使得四边形BFDE是平行四边形.BODACEF证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO.∵AE=CF,∴AO-AE=CO-CF,即EO=OF.又BO=DO.∴四边形BFDE是平行四边形.AE=CF想想还有其他证法吗?想一想:判定一个四边形是平行边形可以从哪些角度思考?具体有哪些方法?从边考虑两组对边分别平行的四边形是平行四边形(定义法)两组对边分别相等的四边形是平行四边形(判定定理1)从角考虑两组对角分别相等的四边形是平行四边形(判定定理2)从对角线考虑对角线互相平分的四边形是平行四边形(判定定理3)当堂练习1.根据下列条件,不能判定一个四边形为平行四边形的是()A.两组对边分别相等B.两条对角线互相平分C.两条对角线相等D.两组对边分别平行分析CDABC2.能判定四边形ABCD是平行四边形的条件:∠A:∠B:∠C:∠D的值为()A.1:2:3:4B.1:4:2:3C.1:2:2:1D.3:2:3:2D3.如图所示,△ABC是等边三角形,P是其内任意一点,PD//AB,PE//BC,PF//AC,若△ABC的周长为24,则PD+PE+PF=.AFBDCEP8课堂小结平行四边形的判定(1)判定方法定义法思路选择判定理理1判定定理2判定定理3①已知一组对边平行,可以证另一组对边平行,即定义法.②已知一组对边相等,可以证另一组对边相等,构成判定定理1.③已知一组对角相等,再证另一组对角相等,构成判定定理2.④已知有一条对角线被平分,再证另一条对角线被平分,构成判定定理3.
本文标题:八年级数学下册 第十八章 平行四边形18.1 平行四边形18.1.2 平行四边形的判定第1课时 平行
链接地址:https://www.777doc.com/doc-8210792 .html