您好,欢迎访问三七文档
数学第八章立体几何第4讲直线、平面垂直的判定与性质01基础知识自主回顾02核心考点深度剖析04高效演练分层突破03方法素养助学培优一、知识梳理1.直线与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的_________________都垂直,则该直线与此平面垂直a,bαa∩b=Ol⊥al⊥b⇒l⊥α性质定理垂直于同一个平面的两条直线_________a⊥αb⊥α⇒a∥b两条相交直线平行2.平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的_________,则这两个平面互相垂直lβl⊥α⇒α⊥β性质定理两个平面互相垂直,则一个平面内垂直于_________的直线垂直于另一个平面α⊥βlβα∩β=al⊥a⇒l⊥α垂线交线3.空间角(1)直线与平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的_________叫做这条直线和这个平面所成的角,如图,_________就是斜线AP与平面α所成的角.②线面角θ的范围:θ∈_________.锐角∠PAO0,π2(2)二面角①定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱.两个半平面叫做______________.如图的二面角,可记作:二面角_________或二面角_________.②二面角的平面角如图,过二面角αlβ的棱l上一点O在两个半平面内分别作BO⊥l,AO⊥l,则_________就叫做二面角αlβ的平面角.二面角的面αlβPABQ∠AOB③二面角的范围设二面角的平面角为θ,则θ∈_________.④当θ=_________时,二面角叫做直二面角.[0,π]π2常用结论1.线线、线面、面面垂直间的转化2.两个重要定理(1)三垂线定理在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(2)三垂线定理的逆定理在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.3.重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.二、教材衍化1.下列命题中错误的是________(填序号).①如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β②如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β③如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ④如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β解析:对于④,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项均是正确的.答案:④2.在三棱锥PABC中,点P在平面ABC中的射影为点O.(1)若PA=PB=PC,则点O是△ABC的________心;(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.解析:(1)如图1,连接OA,OB,OC,OP,在Rt△POA,Rt△POB和Rt△POC中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,延长AO,BO,CO分别交BC,AC,AB于点H,D,G.因为PC⊥PA,PB⊥PC,PA∩PB=P,所以PC⊥平面PAB,又AB平面PAB,所以PC⊥AB,因为AB⊥PO,PO∩PC=P,所以AB⊥平面PGC,又CG平面PGC,所以AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.答案:(1)外(2)垂一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.()(2)垂直于同一个平面的两平面平行.()(3)直线a⊥α,b⊥α,则a∥b.()(4)若α⊥β,a⊥β,则a∥α.()(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.()(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.()××√×√×二、易错纠偏常见误区(1)忽略线面垂直的条件致误;(2)忽视平面到空间的变化致误.1.“直线a与平面α内的无数条直线都垂直”是“直线a与平面α垂直”的________条件.解析:根据直线与平面垂直的定义知“直线a与平面α内的无数条直线都垂直”不能推出“直线a与平面α垂直”,反之则可以,所以应是必要不充分条件.答案:必要不充分2.已知直线a,b,c,若a⊥b,b⊥c,则a与c的位置关系为________.解析:若a,b,c在同一个平面内,由题设条件可得a∥c;若在空间中,则直线a与c的位置关系不确定,平行,相交,异面都有可能.答案:平行,相交或异面线面垂直的判定与性质(多维探究)角度一线面垂直的证明如图所示,在四棱锥PABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点,且DF=12AB,PH为△PAD中AD边上的高.求证:(1)PH⊥平面ABCD;(2)EF⊥平面PAB.【证明】(1)因为AB⊥平面PAD,PH平面PAD,所以PH⊥AB.因为PH为△PAD中AD边上的高,所以PH⊥AD.因为AB∩AD=A,AB平面ABCD,AD平面ABCD,所以PH⊥平面ABCD.(2)如图,取PA的中点M,连接MD,ME.因为E是PB的中点,所以ME═∥12AB.又因为DF═∥12AB.所以ME═∥DF,所以四边形MEFD是平行四边形,所以EF∥MD.因为PD=AD,所以MD⊥PA.因为AB⊥平面PAD,所以MD⊥AB.因为PA∩AB=A,所以MD⊥平面PAB,所以EF⊥平面PAB.角度二线面垂直性质的应用如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【证明】(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊆/平面ABC,AB平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB平面ABC,BC平面ABC,所以AD⊥平面ABC.又因为AC平面ABC,所以AD⊥AC.(1)判定线面垂直的四种方法(2)判定线线垂直的四种方法如图所示,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明:(1)在四棱锥PABCD中,因为PA⊥底面ABCD,CD平面ABCD,所以PA⊥CD.因为AC⊥CD,PA∩AC=A,所以CD⊥平面PAC.而AE平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD⊂平面PCD,所以AE⊥PD.因为PA⊥底面ABCD,所以PA⊥AB.又因为AB⊥AD且PA∩AD=A,所以AB⊥平面PAD,而PD平面PAD,所以AB⊥PD.又因为AB∩AE=A,所以PD⊥平面ABE.面面垂直的判定与性质(典例迁移)(一题多解)如图,四棱锥PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面PAD;(2)求证:平面EFG⊥平面EMN.【证明】(1)法一:取PA的中点H,连接EH,DH.又E为PB的中点,所以EH═∥12AB.又CD═∥12AB,所以EH═∥CD.所以四边形DCEH是平行四边形,所以CE∥DH.又DH平面PAD,CE⊆/平面PAD.所以CE∥平面PAD.法二:连接CF.因为F为AB的中点,所以AF=12AB.又CD=12AB,所以AF=CD.又AF∥CD,所以四边形AFCD为平行四边形.因此CF∥AD.又CF⊆/平面PAD,AD平面PAD,所以CF∥平面PAD.因为E,F分别为PB,AB的中点,所以EF∥PA.又EF⊆/平面PAD,PA平面PAD,所以EF∥平面PAD.又因为CF∩EF=F.故平面CEF∥平面PAD.又因为CE平面CEF,所以CE∥平面PAD.(2)因为E,F分别为PB,AB的中点,所以EF∥PA,又AB⊥PA,所以AB⊥EF.同理可得AB⊥FG.又EF∩FG=F,EF⊂平面EFG,FG平面EFG,因此AB⊥平面EFG.又M,N分别为PD,PC的中点,所以MN∥CD.又AB∥CD,所以MN∥AB,所以MN⊥平面EFG.又MN平面EMN,所以平面EFG⊥平面EMN.【迁移探究1】(变问法)在本例条件下,证明:平面EMN⊥平面PAC.证明:因为AB⊥PA,AB⊥AC,且PA∩AC=A,所以AB⊥平面PAC.又MN∥CD,CD∥AB,所以MN∥AB.所以MN⊥平面PAC.又MN平面EMN,所以平面EMN⊥平面PAC.【迁移探究2】(变问法)在本例条件下,证明:平面EFG∥平面PAC.证明:因为E,F,G分别为PB,AB,BC的中点,所以EF∥PA,FG∥AC,又EF⊆/平面PAC,PA平面PAC,所以EF∥平面PAC.同理,FG∥平面PAC.又EF∩FG=F,所以平面EFG∥平面PAC.证明面面垂直的两种常用方法(1)用面面垂直的判定定理,即先证明其中一个平面经过另一个平面的一条垂线.(2)用面面垂直的定义,即证明两个平面所成的二面角是直二面角,把证明面面垂直的问题转化为证明平面角为直角的问题.如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF∥平面PCD.证明:(1)因为PA=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD.所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面PAD⊥平面ABCD,所以AB⊥平面PAD.所以AB⊥PD.又因为PA⊥PD,所以PD⊥平面PAB.所以平面PAB⊥平面PCD.(3)取PC的中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FG∥BC,FG=12BC.因为四边形ABCD为矩形,且E为AD的中点,所以DE∥BC,DE=12BC.所以DE∥FG,DE=FG.所以四边形DEFG为平行四边形.所以EF∥DG.又因为EF⊆/平面PCD,DG平面PCD,所以EF∥平面PCD.垂直关系中的探索性问题(师生共研)如图,在三棱柱ABCA1B1C1中,侧棱AA1⊥底面ABC,M为棱AC的中点.AB=BC,AC=2,AA1=2.(1)求证:B1C∥平面A1BM;(2)求证:AC1⊥平面A1BM;(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时BNBB1的值;如果不存在,请说明理由.【解】(1)证明:连接AB1与A1B,两线交于点O,连接OM.在△B1AC中,因为M,O分别为AC,AB1的中点,所以OM∥B1C,又因为OM平面A1BM,B1C⊆/平面A1BM,所以B1C∥平面A1BM.(2)证明:因为侧棱AA1⊥底面ABC,BM平面ABC,所以AA1⊥BM,又因为M为棱AC的中点,AB=BC,所以BM⊥AC.因为AA1∩AC=A,AA1,AC平面ACC1A1,所以BM⊥平面ACC1A1,所以BM⊥AC1.因为AC=2,所以AM=1.又因为AA1=2,所以在Rt△A
本文标题:2021版高考数学一轮复习 第八章 立体几何 第4讲 直线、平面垂直的判定与性质课件 理 北师大版
链接地址:https://www.777doc.com/doc-8220964 .html