您好,欢迎访问三七文档
数学第八章立体几何第3讲直线、平面平行的判定与性质01基础知识自主回顾02核心考点深度剖析03高效演练分层突破文字语言图形语言符号语言判定定理平面外一条直线与___________的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)因为l∥a,aα,l⊆/α,所以l∥α一、知识梳理1.直线与平面平行的判定定理和性质定理这个平面内文字语言图形语言符号语言性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的_________与该直线平行(简记为“线面平行⇒线线平行”)因为l∥α,lβ,α∩β=b,所以l∥b交线2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条_____________与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)因为a∥β,b∥β,a∩b=P,aα,bα,所以α∥β性质定理如果两个平行平面同时和第三个平面_________,那么它们的_________平行因为α∥β,α∩γ=a,β∩γ=b,所以a∥b相交直线相交交线常用结论牢记线面平行、面面平行的七个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)夹在两个平行平面之间的平行线段长度相等.(4)经过平面外一点有且只有一个平面与已知平面平行.(5)两条直线被三个平行平面所截,截得的对应线段成比例.(6)如果两个平面分别平行于第三个平面,那么这两个平面互相平行.(7)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.二、教材衍化1.下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊆/α,则b∥α解析:选D.A错误,a可能在经过b的平面内;B错误,a与α内的直线平行或异面;C错误,两个平面可能相交;D正确,由a∥α,可得a平行于经过直线a的平面与α的交线c,即a∥c,又a∥b,所以b∥c,b⊆/α,cα,所以b∥α.2.平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,aα,a∥βC.存在两条平行直线a,b,aα,bβ,a∥β,b∥αD.存在两条异面直线a,b,aα,bβ,a∥β,b∥α解析:选D.若α∩β=l,a∥l,a⊆/α,a⊆/β,a∥α,a∥β,故排除A.若α∩β=l,aα,a∥l,则a∥β,故排除B.若α∩β=l,aα,a∥l,bβ,b∥l,则a∥β,b∥α,故排除C.3.如图,在正方体ABCDA1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.解析:连接BD,设BD∩AC=O,连接EO,在△BDD1中,E为DD1的中点,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊆/平面ACE,EO平面ACE,所以BD1∥平面ACE.答案:平行一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()(5)若直线a与平面α内无数条直线平行,则a∥α.()(6)若α∥β,直线a∥α,则a∥β.()××√×××二、易错纠偏常见误区(1)对空间平行关系的转化条件理解不够致误;(2)对面面平行判定定理的条件“平面内两相交直线”认识不清致误;(3)对面面平行性质定理理解不深致误.1.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一的与a平行的直线解析:选A.当直线a在平面β内且过B点时,不存在与a平行的直线.故选A.2.下列条件中,能判断两个平面平行的是________.①一个平面内的一条直线平行于另一个平面;②一个平面内的两条直线平行于另一个平面;③一个平面内有无数条直线平行于另一个平面;④一个平面内任何一条直线都平行于另一个平面.解析:由两个平面平行的判定定理可知,如果一个平面内的两条相交直线与另外一个平面平行,那么这两个平面平行.显然只有④符合条件.答案:④3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.解析:因为平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH是平行四边形.答案:平行四边形线面平行的判定与性质(多维探究)角度一直线与平面平行的判定如图所示,斜三棱柱ABCA1B1C1中,点D,D1分别为AC,A1C1的中点.(1)证明:AD1∥平面BDC1;(2)证明:BD∥平面AB1D1.【证明】(1)因为D1,D分别为A1C1,AC的中点,四边形ACC1A1为平行四边形,所以C1D1═∥DA,所以四边形ADC1D1为平行四边形,所以AD1∥C1D,又AD1⊆/平面BDC1,C1D平面BDC1,所以AD1∥平面BDC1.(2)连接D1D,因为BB1∥平面ACC1A1,BB1平面BB1D1D,平面ACC1A1∩平面BB1D1D=D1D,所以BB1∥D1D,又因为D1,D分别为A1C1,AC的中点,所以DD1═∥AA1,所以BB1=AA1=DD1,故四边形BDD1B1为平行四边形,所以BD∥B1D1,又BD⊆/平面AB1D1,B1D1平面AB1D1,所以BD∥平面AB1D1.角度二直线与平面平行的性质如图,四棱锥PABCD的底面是边长为8的正方形,四条侧棱长均为217,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.【解】(1)证明:因为BC∥平面GEFH,BC平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.同理可证EF∥BC,因此GH∥EF.(2)连接AC,BD交于点O,BD交EF于点K,连接OP,GK.因为PA=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在底面ABCD内,所以PO⊥底面ABCD.又因为平面GEFH⊥平面ABCD,且PO⊆/平面GEFH,所以PO∥平面GEFH.因为平面PBD∩平面GEFH=GK,所以PO∥GK,所以GK⊥底面ABCD,从而GK⊥EF.所以GK是梯形GEFH的高.由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,从而KB=14DB=12OB,即K为OB的中点.再由PO∥GK得GK=12PO,且G是PB的中点,所以GH=12BC=4.由已知可得OB=42,PO=PB2-OB2=68-32=6,所以GK=3.易得EF=BC=8,故四边形GEFH的面积S=GH+EF2·GK=4+82×3=18.判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a⊆/α,b⊂α,a∥b⇒a∥α).(3)利用面面平行的性质定理(α∥β,aα⇒a∥β).(4)利用面面平行的性质(α∥β,a⊆/α,a⊆/β,a∥α⇒a∥β).1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()解析:选A.对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊆/平面MNQ,MQ平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.故选A.2.如图,四棱锥PABCD中AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP∥平面BEF;(2)求证:GH∥平面PAD.证明:(1)连接EC,因为AD∥BC,BC=12AD,所以BC═∥AE,所以四边形ABCE是平行四边形,所以O为AC的中点.又因为F是PC的中点,所以FO∥AP,FO平面BEF,AP⊆/平面BEF,所以AP∥平面BEF.(2)连接FH,OH,因为F,H分别是PC,CD的中点,所以FH∥PD,所以FH∥平面PAD.又因为O是BE的中点,H是CD的中点,所以OH∥AD,所以OH∥平面PAD.又FH∩OH=H,所以平面OHF∥平面PAD.又因为GH平面OHF,所以GH∥平面PAD.面面平行的判定与性质(典例迁移)如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊆/平面BCHG,BC平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G═∥EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊆/平面BCHG,GB平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EFA1∥平面BCHG.【迁移探究1】(变条件)在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊆/平面A1B1BA,A1B平面A1B1BA,所以HD∥平面A1B1BA.【迁移探究2】(变条件)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B平面A1BD1,DM⊆/平面A1BD1,所以DM∥平面A1BD1.又由三棱柱的性质知,D1C1═∥BD,所以四边形BDC1D1为平行四边形,所以DC1∥BD1.又DC1⊆/平面A1BD1,BD1平面A1BD1,所以DC1∥平面A1BD1,又因为DC1∩DM=D,DC1,DM平面AC1D,所以平面A1BD1∥平面AC1D.证明面面平行的常用方法(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用垂直于同一条直线的两个平面平行.(4)如果两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化进行证明.1.如图,AB∥平面α∥平面β,过A,B的直线m,n分别交α,β于C,E和D,F,若AC=2,CE=3,BF=4,则BD的长为()A.65B.75C.85D.95解析:选C.由AB∥α∥β,易证ACCE=BDDF.即ACAE=BDBF,所以BD=AC·BFAE=2×45=85.2.如图,在正方体ABCDA1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC,SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明:(1)如图,连接SB,因为E,G分别是BC,SC的中点,所以EG∥SB.又因为SB平面BDD1B1,EG⊆/平面BDD1B1,所以直线EG∥平面BDD1B1.(2)连接SD,因为F,G分别是DC,SC的中点,所以FG∥SD.又因为SD
本文标题:2021版高考数学一轮复习 第八章 立体几何 第3讲 直线、平面平行的判定与性质课件 理 北师大版
链接地址:https://www.777doc.com/doc-8220970 .html