您好,欢迎访问三七文档
第4讲立体几何第1课时空间中线、面平行和垂直关系的证明题型2解答题规范踩点多得分[考情分析]立体几何的解答题着重考查线线、线面与面面平行和垂直的判定与性质,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.1热点题型分析PARTONE热点综合法证明平行和垂直1.线、面平行问题解题策略(1)证明线面平行:利用线面平行的定义、判定定理,面面平行的性质定理、性质等;(2)证明面面平行:利用面面平行的定义、判定定理、垂直于同一直线的两个平面平行、平行于同一平面的两个平面平行;(3)利用线线、线面、面面平行的相互转化.2.线、面垂直问题解题策略(1)证明线线垂直:利用图形中的垂直关系、等腰三角形底边中线的性质、勾股定理、线面垂直的性质;(2)证明线面垂直:利用判定定理、线面垂直的性质、面面垂直的性质;(3)证明面面垂直:利用判定定理、证明直二面角;(4)利用线线、线面、面面垂直的相互转化.(2019·江苏高考)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.证明(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.1.利用综合法证明平行和垂直的步骤如下:(1)巧转化:根据图形与已知条件,通过转化寻找证明平行或垂直所需要的条件;(2)用定理:将上述转化所得的条件代入相应的判定或性质定理;(3)得结论:根据定理证得相应的结论.2.利用线面平行的判定定理证明线面平行是常用方法,根据定理要求,需证线线平行,而证明线线平行的方法则常用三角形中位线的性质、构造平行四边形或平行公理,要根据图形特征灵活选择方法.3.利用面面垂直的判定定理证明面面垂直是常用方法,而其需要证明线面垂直.在证明线线垂直时,要注意特殊图形中的隐含垂直关系,如直棱柱和正棱柱的条件,菱形对角线相互垂直平分,圆中直径所对的圆周角为90°等.1.如图,平面ABB1A1为圆柱的轴截面,点C为底面圆周上异于A,B的任意一点.(1)求证:BC⊥平面A1AC;(2)若D为AC的中点,求证:A1D∥平面O1BC.证明(1)因为ABB1A1为圆柱的轴截面,点C为底面圆周上异于A,B的任意一点,所以BC⊥AC.又在圆柱中,AA1⊥底面圆O,所以AA1⊥CB,又AA1∩AC=A,所以BC⊥平面A1AC.(2)如图,取BC边中点M,连接DM,O1M.因为D为AC的中点,所以DM∥AB,且DM=12AB.又在圆柱中,A1O1∥AB且A1O1=12AB,所以DM∥A1O1且DM=A1O1,所以A1DMO1是平行四边形,故A1D∥O1M.又A1D⊄平面O1BC,O1M⊂平面O1BC,所以A1D∥平面O1BC.2.如图所示,在三棱柱ABC-A1B1C1中,四边形AA1B1B为正方形,四边形BB1C1C为菱形,∠BB1C1=60°,平面AA1B1B⊥平面BB1C1C.(1)求证:B1C⊥AC1;(2)设点E,F分别是B1C,AA1的中点,试判断直线EF与平面ABC的位置关系,并说明理由.解(1)证明:如图所示,连接BC1.因为四边形BB1C1C为菱形,所以BC1⊥B1C.又因为四边形AA1B1B为正方形,所以AB⊥BB1,因为平面AA1B1B⊥平面BB1C1C,平面AA1B1B∩平面BB1C1C=BB1,AB⊂平面AA1B1B,所以AB⊥平面BB1C1C.又B1C⊂平面BB1C1C,于是AB⊥B1C.又因为AB∩BC1=B,所以B1C⊥平面ABC1.因为AC1⊂平面ABC1,所以B1C⊥AC1.(2)直线EF与平面ABC的位置关系为平行,证明如下:如图所示,取BC中点D,连接AD,DE.因为E是B1C的中点,所以DE∥BB1且DE=12BB1.因为四边形AA1B1B为正方形,F是AA1的中点,所以AF∥BB1且AF=12BB1,故DE∥AF且DE=AF,所以四边形ADEF是平行四边形,因此AD∥EF.又AD⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.2专题作业PARTTWO1.(2017·江苏高考)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.2.如图,在正方形AMDE中,B,C分别为AM,MD的中点,在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥平面AMDE,PA=AE,求证:AF⊥平面PED.证明(1)因为四边形AMDE为正方形,B为AM的中点,所以AB∥DE.又DE⊂平面PED,AB⊄平面PED,所以AB∥平面PED.又因为AB⊂平面ABHGF,平面ABHGF∩平面PED=FG,所以AB∥FG.(2)因为PA⊥平面AMDE,ED⊂平面AMDE,所以PA⊥ED,又因为四边形AMDE为正方形,所以AE⊥ED.因为AE∩PA=A,所以ED⊥平面PAE.又AF⊂平面PAE,所以ED⊥AF.因为PA=AE,F为棱PE的中点,所以AF⊥PE,又ED∩PE=E,所以AF⊥平面PED.3.如图,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AC⊥BC,E在线段B1C1上,B1E=3EC1,AC=BC=CC1=4.(1)求证:BC⊥AC1;(2)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1?若存在,请指出点F的位置,并给出证明;若不存在,请说明理由.解(1)证明:因为AA1⊥平面ABC,BC⊂平面ABC,所以BC⊥AA1.又因为BC⊥AC,AA1∩AC=A,AA1,AC⊂平面AA1C1C,所以BC⊥平面AA1C1C,又AC1⊂平面AA1C1C,所以BC⊥AC1.(2)解法一:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图,在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.因为B1E=3EC1,所以EG=34A1C1,又AF∥A1C1且AF=34A1C1,所以AF∥EG且AF=EG,所以四边形AFEG为平行四边形,所以EF∥AG,又EF⊄平面A1ABB1,AG⊂平面A1ABB1,所以EF∥平面A1ABB1.解法二:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图,在平面BCC1B1内过点E作EG∥BB1交BC于点G,连接FG.因为EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,所以EG∥平面A1ABB1.因为B1E=3EC1,所以BG=3GC,所以FG∥AB,又AB⊂平面A1ABB1,FG⊄平面A1ABB1,所以FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,所以平面EFG∥平面A1ABB1.又EF⊂平面EFG,所以EF∥平面A1ABB1.本课结束
本文标题:2020届高考数学大二轮复习 冲刺创新专题 题型2 解答题 规范踩点 多得分 第4讲 立体几何 第1
链接地址:https://www.777doc.com/doc-8225026 .html