您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高中数学:构造函数方法
高中数学:构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(xgxfxFxgxf或;(2))(-)()()0(0)(-)(xgxfxFxgxf或;(3)kxxfxFkxf)()()(k)(或;2.利用积商函数求导法则构造(1))()()()0(0)()()(g)(xgxfxFxgxfxxf或;(2))0)(()(g)()()0(0)()(-)(g)(xgxxfxFxgxfxxf或;(3))()()0(0)()(xxxfxFxfxf或;(4))0(x)()()0(0)(-)(xxxfxFxfxf或;(5))()()0(0)(n)(xxfxxFxfxfn或;(6))0(x)()()0(0)(n-)(xnxxfxFxfxf或;(7))(e)()0(0)()(xfxFxfxfx或;(8))0(e)()()0(0)(-)(xxxfxFxfxf或;(9))(e)()0(0)(k)(xfxFxfxfkx或;(10))0(e)()()0(0)(k-)(kxxxfxFxfxf或;(11))(sin)()0(0tanx)()(xxfxFxfxf或;(12))0(sinsinx)()()0(0tan)(-)(xxfxFxxfxf或;(13))0(coscos)()()0(0)(tanx)(xxxfxFxfxf或;(14))(cos)()0(0)(tanx-)(xfxFxfxf或;(15)()+lna()0(0)()()xfxfxFxafx或;(16)()()lna()0(0)()xfxfxfxFxa或;考点一。直接构造法1.(1)已知()(4)fxfx,且当2x时,其导函数()fx满足()2()xfxfx,若24a,则()A.2(2)(3)(log)afffaB.2(3)(log)(2)affafC.2(log)(3)(2)afaffD.2(log)(2)(3)afaff解:由题:对称轴x=2,单增,时,单减,当时,当()(f2x)(f2x0)()2xxxxfC,1624,2log12选aa。(2)设a>0,b>0.()A.若a2222bab,则a>bB.若a2222bab,则a<bC.若a2222bab,则a>bD.若a2222bab,则a<b解:对选项A:构造函数:22xfxx,则2ln220xfx恒成立,故有函数22xfxx在x>0上单调递增,即a>b成立.其余选项用同样方法排除.【答案】A。(3)已知函数()fx满足(2)1f,且()fx的导函数()1fxx,求解不等式21()12fxxx。解:2x,0)2(g)(g01)()(,121)()(g2故解集为:单增,,则xxxfxgxxxfx。(4)已知函数fx满足:1,00,fxfxffxfx是的导函数,求解不等式1xxefxe。解:0x,0)0(g(g,0)1)()(()(,1)()(g故解集为:)单增,则令xxfxfexgexfexxxx。(5)若)(xf满足1)(')(xfxf,4)0(f,求解不等式3()1xfxe。解:令0)(3)(13)(f)(gxxxxxexheexfeexx,)1)()(()(hxfxfexx0,g(x)单调递增,g(0)=f(0)-4=0,则g(x)0,故x0.(6)若函数f(x)满足:2()()fxfx成立,若2)4ln(f,求解不等式2()xfxe。解:令g(x)=2)(fxex,则222)()21)()(()(gxxexfxfex0,则单调递增,1)4(ln)4(lng24lnef,则g(x)g(ln4),不等式2()xfxe的解为:xln4.考点二。找原函数构造法2.(1)若奇函数f(x)满足:(1)0f,当0x时,'()()0xfxfx,求解不等式()0fx。单增偶,奇奇为奇单减,又当解:令,0x)(g)(f)(0)()()(,0x,)()x(g2xxxgxxfxfxxgxxf,且g(1)=g(-1)=0,故解集为:x-1或0x1.(2)若f(x)满足:f(0)=1,且)()(4,3)()(f3xfxfxfx求解不等式。解:不合题意但0)0(f1)(f3xex,则32ln042)()(f412)(f33xexfxexxx,故。考点三。比大小,证明3.(1)证明对任意正整数n,不等式3211)11(lnnnn。解:令x=n1,设函数f(x)=)1ln(x23xx(0x1),112x3)(f2xxx=1x12323xxx=1x)1(323xx0恒成立,所以f(x)单调增加,所以f(x)f(0)=0,即得证原命题。(2)f(x)=xe,设ab,比较aafbfbfafb)()(2)()(与的大小。解:作差法:abafbfbfa)()(2)()(f=aabeeababa)-b2)2(2)((,令g(x)=x+2+(x-2)xe,则g(0)=0,xexx)1(1)(g在),(0单调递增,即0(0)g(x)g,故g(x)在),(0单调递增,g(x)g(0)=0,即abafbfbfaf)()(2)()(。(3)已知函数f(x)=-x-ln(-x),x[-e,0),证明:xxx)ln()(f21。解:设xxxfxg)ln()()(=xxxx)ln()ln(,令u=-x∈(0,e],g(u)=uuuln-lnu,只需证g(u)21,g'(u)=222uln1-1ln11uuuuuu,uuuuuhuuuu12u112)(,1-ln)(h22令,则),2,1(u0)()(0)(h,单增,令uhuhu(1)当u∈(0,1],lnu-10,1-u10,g'(u)0,g(u)递减,g(u)≥g(1)=121,不等式成立。(2)当u∈(1,2),lnuu-1(函数性质),g(u)=u-lnu-uulnu-(u-1)-u1-u=u121,不等式成立。(3)当u∈[2,e),ln(u)-10,1-u10,g'(u)0,g(u)递增,g(u)≥g(2)=eln2322ln23-2=21,不等式成立。考点四。放缩构造法4.(1)已知函数f(x)=(1+x)e-2x,g(x)=ax+32x+1+2xcosx.当x∈[0,1]时,(1)求证:1-x≤f(x)≤11x;(2)若f(x)≥g(x)恒成立,求实数a的取值范围.证明:(1)要证x∈[0,1]时,(1+x)e-2x≥1-x,只需证明(1+x)e-x≥(1-x)ex.记h(x)=(1+x)e-x-(1-x)ex,则h′(x)=x(ex-e-x),当x∈(0,1)时,h′(x)>0,因此h(x)在[0,1]上是增函数,故h(x)≥h(0)=0.所以f(x)≥1-x,x∈[0,1].要证x∈[0,1]时,(1+x)e-2x≤11x,只需证明ex≥x+1.记K(x)=ex-x-1,则K′(x)=ex-1,当x∈(0,1)时,K′(x)>0,因此K(x)在[0,1]上是增函数,故K(x)≥K(0)=0.所以f(x)≤11x,x∈[0,1].综上,1-x≤f(x)≤11x,x∈[0,1].(2)f(x)-g(x)=(1+x)e-2x-312cos2xaxxx≥1-x-ax-1-32x-2xcosx=-x(a+1+22x+2cosx).设G(x)=22x+2cosx,则G′(x)=x-2sinx.记H(x)=x-2sinx,则H′(x)=1-2cosx,当x∈(0,1)时,H′(x)<0,于是G′(x)在[0,1]上是减函数,从而当x∈(0,1)时,G′(x)<G′(0)=0,故G(x)在[0,1]上是减函数.于是G(x)≤G(0)=2,从而a+1+G(x)≤a+3.所以,当a≤-3时,f(x)≥g(x)在[0,1]上恒成立.下面证明当a>-3时,f(x)≥g(x)在[0,1]上不恒成立.f(x)-g(x)≤3112cos12xaxxxx=32cos12xxaxxxx=212cos12xxaxx,记I(x)=2112cos()121xaxaGxxx,则I′(x)=21'()(1)Gxx,当x∈(0,1)时,I′(x)<0,故I(x)在[0,1]上是减函数,于是I(x)在[0,1]上的值域为[a+1+2cos1,a+3].因为当a>-3时,a+3>0,所以存在x0∈(0,1),使得I(x0)>0,此时f(x0)<g(x0),即f(x)≥g(x)在[0,1]上不恒成立.综上,实数a的取值范围是(-∞,-3].
本文标题:高中数学:构造函数方法
链接地址:https://www.777doc.com/doc-8232990 .html