您好,欢迎访问三七文档
第4讲直线与圆、圆与圆的位置关系第九章平面解析几何1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.方法位置关系几何法代数法相交d___rΔ___0相切d___rΔ___0相离d___rΔ___0==2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r10),圆O2:(x-a2)2+(y-b2)2=r22(r20).方法位置关系几何法:圆心距d与r1,r2的关系代数法:两圆方程联立组成方程组的解的情况外离__________________外切_____________一组实数解相交______________________两组不同的实数解内切d=|r1-r2|(r1≠r2)____________内含0≤d|r1-r2|(r1≠r2)______dr1+r2无解d=r1+r2|r1-r2|dr1+r2一组实数解无解判断正误(正确的打“√”,错误的打“×”)(1)若直线与圆组成的方程组有解,则直线与圆相交或相切.()(2)若两个圆的方程组成的方程组无解,则这两个圆的位置关系为外切.()(3)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.()(4)联立两相交圆的方程,并消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.()答案:(1)√(2)×(3)×(4)√(教材习题改编)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是()A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)解析:选C.由题意可得,圆的圆心为(a,0),半径为2,所以|a-0+1|12+(-1)2≤2,即|a+1|≤2,解得-3≤a≤1,故选C.圆Q:x2+y2-4x=0在点P(1,3)处的切线方程为()A.x+3y-2=0B.x+3y-4=0C.x-3y+4=0D.x-3y+2=0解析:选D.因点P在圆上,且圆心Q的坐标为(2,0),所以kPQ=-32-1=-3,所以切线斜率k=33,所以切线方程为y-3=33(x-1),即x-3y+2=0.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则实数m=________.解析:圆C1的圆心是原点(0,0),半径r1=1,圆C2:(x-3)2+(y-4)2=25-m,圆心C2(3,4),半径r2=25-m,由两圆外切,得|C1C2|=r1+r2=1+25-m=5,所以m=9.答案:9(2018·高考全国卷Ⅰ)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________.解析:由题意知圆的方程为x2+(y+1)2=4,所以圆心坐标为(0,-1),半径为2,则圆心到直线y=x+1的距离d=|-1-1|2=2,所以|AB|=222-(2)2=22.答案:22[典例引领](1)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定(2)圆x2+y2=1与直线y=kx+2没有公共点的充要条件是________.直线与圆的位置关系【解析】(1)因为M(a,b)在圆O:x2+y2=1外,所以a2+b2>1,从而圆心O到直线ax+by=1的距离d=|a·0+b·0-1|a2+b2=1a2+b2<1,所以直线与圆相交.(2)法一:将直线方程代入圆方程,得(k2+1)x2+4kx+3=0,直线与圆没有公共点的充要条件是Δ=16k2-12(k2+1)0,解得k∈(-3,3).法二:圆心(0,0)到直线y=kx+2的距离d=2k2+1,直线与圆没有公共点的充要条件是d1,即2k2+11,解得k∈(-3,3).【答案】(1)B(2)k∈(-3,3)若将本例(1)的条件改为“点M(a,b)在圆O:x2+y2=1上”,则直线ax+by=1与圆O的位置关系如何?解:由点M在圆上,得a2+b2=1,所以圆心O到直线ax+by=1的距离d=1a2+b2=1,则直线与圆O相切.判断直线与圆的位置关系常用的方法[提醒]上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.[通关练习]1.直线xsinθ+ycosθ=1+cosθ与圆x2+(y-1)2=12的位置关系是()A.相离B.相切C.相交D.以上都有可能解析:选A.因为圆心到直线的距离d=|cosθ-1-cosθ|sin2θ+cos2θ=122,所以直线与圆相离.2.(2019·聊城模拟)圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点的个数为()A.1B.2C.3D.4解析:选C.因为圆心到直线的距离为|9+12-11|5=2,又因为圆的半径为3,所以直线与圆相交,由数形结合知,圆上到直线的距离为1的点有3个.圆的切线与弦长问题,是近年来高考的一个热点,多以选择题、填空题的形式呈现,多为中、低档题目.高考对圆的切线及弦长问题的考查主要有以下三个命题角度:(1)求圆的切线方程;(2)求弦长及切线长;(3)由弦长及切线问题求参数.圆的切线与弦长问题(高频考点)[典例引领]角度一求圆的切线方程过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为()A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=0【解析】因为过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,所以点(3,1)在圆(x-1)2+y2=r2上,因为圆心与切点连线的斜率k=1-03-1=12,所以切线的斜率为-2,则圆的切线方程为y-1=-2(x-3),即2x+y-7=0.故选B.【答案】B角度二求弦长及切线长(1)若a,b,c是△ABC三个内角的对边,且csinC=3asinA+3bsinB,则直线l:ax-by+c=0被圆O:x2+y2=12所截得的弦长为()A.46B.26C.6D.5(2)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=________.【解析】(1)因为asinA=bsinB=csinC.故由csinC=3asinA+3bsinB可得c2=3(a2+b2).圆O:x2+y2=12的圆心为O(0,0),半径为r=23,圆心O到直线l的距离d=|c|a2+b2=3,所以直线l被圆O所截得的弦长为2r2-d2=2(23)2-(3)2=6,故选C.(2)由于直线x+ay-1=0是圆C:x2+y2-4x-2y+1=0的对称轴,所以圆心C(2,1)在直线x+ay-1=0上,所以2+a-1=0,所以a=-1,所以A(-4,-1).所以|AC|2=36+4=40.又r=2,所以|AB|2=40-4=36.所以|AB|=6.【答案】(1)C(2)6角度三由弦长及切线问题求参数(2016·高考全国卷Ⅰ)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=23,则圆C的面积为________.【解析】圆C的方程可化为x2+(y-a)2=a2+2,可得圆心的坐标为C(0,a),半径r=a2+2,所以圆心到直线x-y+2a=0的距离为|-a+2a|2=|a|2,所以|a|22+(3)2=(a2+2)2,解得a2=2,所以圆C的半径为2,所以圆C的面积为4π.【答案】4π(1)求直线被圆截得的弦长的常用方法①几何法:用圆的几何性质求解,运用弦心距、半径及弦的一半构成的直角三角形,计算弦长|AB|=2r2-d2.②代数法:联立直线与圆的方程得方程组,消去一个未知数得一元二次方程,再利用根与系数的关系结合弦长公式求解,其公式为|AB|=1+k2|x1-x2|.(2)圆的切线方程的求法①几何法:设切线方程为y-y0=k(x-x0),利用点到直线的距离公式表示出圆心到切线的距离d,然后令d=r,进而求出k.②代数法:设切线方程为y-y0=k(x-x0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k.[通关练习]1.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y-5=0B.2x+y+5=0或2x+y-5=0C.2x-y+5=0或2x-y-5=0D.2x-y+5=0或2x-y-5=0解析:选A.设直线方程为2x+y+c=0,由直线与圆相切,得d=|c|5=5,c=±5,所以所求方程为2x+y+5=0或2x+y-5=0.2.(2019·洛阳市第一次统一考试)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|=2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.依题意,注意到|AB|=2=|OA|2+|OB|2等价于圆心O到直线l的距离等于22,即有1k2+1=22,k=±1.因此,“k=1”是“|AB|=2”的充分不必要条件,选A.3.(2016·高考全国卷Ⅲ)已知直线l:mx+y+3m-3=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.若|AB|=23,则|CD|=________.解析:设圆心到直线l:mx+y+3m-3=0的距离为d,则弦长|AB|=212-d2=23,得d=3,即3m-3m2+1=3,解得m=-33,则直线l:x-3y+6=0,数形结合可得|CD|=|AB|cos30°=4.答案:4[典例引领](1)已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,则ab的最大值为()A.62B.32C.94D.23(2)两圆C1:x2+y2+4x+y+1=0,C2:x2+y2+2x+2y+1=0相交于A、B两点,则|AB|=________.圆与圆的位置关系【解析】(1)由圆C1与圆C2相外切,可得(a+b)2+(-2+2)2=2+1=3,即(a+b)2=a2+2ab+b2=9,根据基本不等式可知9=a2+2ab+b2≥2ab+2ab=4ab,即ab≤94,当且仅当a=b时,等号成立.故选C.(2)由(x2+y2+4x+y+1)-(x2+y2+2x+2y+1)=0得弦AB所在直线方程为2x-y=0.圆C2的方程即为(x+1)2+(y+1)2=1,圆心C2(-1,-1),半径r2=1.圆心C2到直线AB的距离d=|2×(-1)-(-1)|5=15.所以|AB|=2r22-d2=21-15=455.【答案】(1)C(2)455若本例(1)条件中“外切”变为“内切”,求ab的最大值.解:由C1与C2内切,得(a+b)2+(-2+2)2=1.即(a+b)2=1,又ab≤a+b22=14,当且仅当a=b时等号成立,故ab的最大值为14.(1)几何法判断圆与圆的位置关系的步骤①确定两圆的圆心坐标和半径;②利用平面内两点间的距离公式求出圆心距d,并求r1+r2,|r1-r2|;③比较d,r1+r2,|r1-r2|的大小,然后写出结论.(2)两圆公共弦长的求法两圆公共弦长,先求出公共弦所在直线的方程,在其中一圆中,由弦心距d,半弦长l2,半径r所在线段构成直角三角形,利用勾股定理求解.[通关练习]1.圆C1:(x-m)2+(y+2)2=9与圆C2:(x+1)2+(y-m)2=4外切,则m的值为()A.2B.-5C.2或-5D.不确定解析:选C.由C1(m,-2),r1=3;C2(-1,m),r2=2;则两圆心之间的距离为|C1C2|=(m+1)2+(-2-m)2=2+3=5,解得m=2或-5.故选C.2.(2019·河南郑州模拟)若⊙O:x2+y2=5与⊙O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相
本文标题:2020版高考数学大一轮复习 第九章 平面解析几何 第4讲 直线与圆、圆与圆的位置关系课件 理 新人
链接地址:https://www.777doc.com/doc-8236231 .html