您好,欢迎访问三七文档
导入新课讲授新课当堂练习课堂小结3应用一元一次方程——水箱变高了第五章一元一次方程学习目标1.借助立体及平面图形学会分析复杂问题中的数量关系和等量关系.(难点)2.能利用一元一次方程解决简单的图形问题.(重点)hr阿基米德用非常巧妙地方法测出了皇冠的体积,你知道他是如何测量的吗?形状改变,体积不变.=导入新课思考:在这个过程中什么没有发生变化?讲授新课图形的等长变化一合作探究(1)若该长方形的长比宽多1.4m,此时长方形的长、宽各是多少?在这个过程中什么没有发生变化?长方形的周长(或长与宽的和)不变用一根长为10m的铁丝围成一个长方形.xm(x+1.4)m等量关系:(长+宽)×2=周长解:设此时长方形的宽为xm,则它的长为(x+1.4)m.根据题意,得(x+1.4+x)×2=10解得x=1.81.8+1.4=3.2此时长方形的长为3.2m,宽为1.8m.(2)若该长方形的长比宽多0.8m,此时长方形的长和宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有什么变化?xm(x+1.4)m解:设此时长方形的宽为xm,则它的长为(x+0.8)m.根据题意,得(x+0.8+x)×2=10解得x=2.12.1+0.8=2.9此时长方形的长为2.9m,宽为2.1m,面积为2.9×2.1=6.09(m2),(1)中长方形的面积为3.2×1.8=5.76(m2).此时长方形的面积比(1)中长方形的面积增大6.09-5.76=0.33(m2).(3)若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的正方形的面积与(2)中相比,又有什么变化?xm(x+x)×2=10解得x=2.5正方形的面积为2.5×2.5=6.25(m2)解:设正方形的边长为xm.根据题意,得比(2)中面积增大6.25-6.09=0.16(m2)正方形的边长为2.5m同样长的铁丝可以围更大的地方例1用两根等长的铁丝分别绕成一个正方形和一个圆,已知正方形的边长比圆的半径长2(π-2)m,求这两根等长的铁丝的长度,并通过计算说明谁的面积大.典例精析[解析]比较两图形的面积大小,关键是通过题中的等量关系列方程求得圆的半径和正方形的边长,本题的等量关系为正方形的周长=圆的周长.解:设圆的半径为rm,则正方形的边长为[r+2(π-2)]m.根据题意,得答:铁丝的长为8πm,圆的面积较大.因为4π×4>4π×π,所以16π>4π2,所以圆的面积大.正方形的面积为[4+2(π-2)]2=4π2(m2).所以圆的面积是π×42=16π(m2),所以铁丝的长为2πr=8π(m).2πr=4(r+2π-4),解得r=4.(1)形状、面积发生了变化,而周长没变;(2)形状、周长不同,但是根据题意找出周长之间的关系,把这个关系作为等量关系.解决问题的关键是通过分析变化过程,挖掘其等量关系,从而可列方程.归纳总结图形的等积变化二某居民楼顶有一个底面直径和高均为4m的圆柱形储水箱.现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m减少为3.2m.那么在容积不变的前提下,水箱的高度将由原先的4m变为多少?合作探究1.如果设水箱的高变为xm,填写下表:旧水箱新水箱底面半径/m高/m体积/m3.列出方程并求解.2.根据表格中的分析,找出等量关系.21.64xπ×22×4π×1.62×x旧水箱的容积=新水箱的容积π×22×4=π×1.62×x,解得x=6.25.因此,水箱的高度变成了6.25m.例2一种牙膏出口处直径为5mm,小明每次刷牙都挤出1cm长的牙膏,这样一支牙膏可以用36次,该品牌牙膏推出新包装,只是将出口处直径改为6mm,小明还是按习惯每次挤出1cm的牙膏,这样,这一支牙膏能用多少次?解:设这一支牙膏能用x次,根据题意得π×2.52×10×36=π×32×10x.解这个方程,得x=25.答:这一支牙膏能用25次.你认为列一元一次方程解应用题的主要步骤有哪些?关键是什么?思考:1.审——通过审题找出等量关系.6.答——注意单位名称.5.检——检验求出的值是否为方程的解,并检验是否符合实际问题.4.解——求出方程的解(对间接设的未知数切忌继续求解).3.列——依据找到的等量关系,列出方程.2.设——设出合理的未知数(直接或间接),注意单位名称.做一做1.要锻造一个直径为8厘米、高为4厘米的圆柱形毛坯,则至少应截取直径为4厘米的圆钢______厘米2.钢锭的截面是正方形,其边长是20厘米,要锻造成长、宽、高分别为40厘米、30厘米、10厘米的长方体,则应截取这种钢锭多长?答案:30厘米.16当堂练习1.一个长方形的周长是40cm,若将长减少8cm,宽增加2cm,长方形就变成了正方形,则正方形的边长为()A.6cmB.7cmC.8cmD.9cmB2.C3.根据图中给出的信息,可得正确的方程是()BA.π×42x=π×32×(x+5)B.π×42x=π×32×(x-5)C.π×82x=π×62×(x+5)D.π×82x=π×62×(x-5)4.小明的爸爸想用10米铁线在墙边围成一个鸡棚,使长比宽大4米,问小明要帮他爸爸围成的鸡棚的长和宽各是多少呢?铁线墙面xx+4x+x+x+4=10门墙面铁线4-变式:小明若小明用10米铁线在墙边围成一个长方形鸡棚,使长比宽大5米,但在宽的一边有一扇1米宽的门,那么,请问小明围成的鸡棚的长和宽又是多少呢?(x-1)+x+(x+5)=10x课堂小结应用一元一次方程图形等长变化{应用一元一次方程解决实际问题的步骤图形等积变化列⑤检{④解设审⑥答
本文标题:2019秋七年级数学上册 第五章 一元一次方程 5.3 应用一元一次方程——水箱变高了教学课件(新
链接地址:https://www.777doc.com/doc-8242884 .html