您好,欢迎访问三七文档
12.1幂的运算第12章整式的乘除导入新课讲授新课当堂练习课堂小结3.积的乘方学习目标1.理解并掌握积的乘方法则及其应用.(重点)2.会运用积的乘方的运算法则进行计算.(难点)导入新课问题引入1.计算:(1)10×102×103=______;(2)(x5)2=_________.x101062.(1)同底数幂的乘法:am·an=(m,n都是正整数).am+n(2)幂的乘方:(am)n=(m,n都是正整数).amn底数不变指数相乘指数相加同底数幂的乘法幂的乘方其中m,n都是正整数(am)n=amnam·an=am+n想一想:同底数幂的乘法法则与幂的乘方法则有什么相同点和不同点?讲授新课积的乘方运算一思考下面两道题:2();ab3().ab(1)(2)我们可以根据乘方的意义及乘法交换律、结合律进行运算.这两道题有什么特点?底数为两个因式相乘,积的形式.这种形式为积的乘方我们学过的幂的乘方的运算性质适用吗?自主探究2()ab()()abab()()aabb22ab同理:(乘方的意义)(乘法交换律、结合律)(同底数幂相乘的法则)3()ab()()()ababab()()aaabbb33ab(ab)n=(ab)·(ab)·····(ab)n个ab=(a·a·····a)·(b·b·····b)n个an个b=anbn.证明:思考问题:积的乘方(ab)n=?猜想结论:因此可得:(ab)n=anbn(n为正整数).(ab)n=anbn(n为正整数)推理验证积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab)n=anbn(n为正整数)想一想:三个或三个以上的积的乘方等于什么?(abc)n=anbncn(n为正整数)知识要点积的乘方法则例1计算:(1)(2a)3;(2)(-5b)3;(3)(xy2)2;(4)(-2x3)4.解:(1)原式=(2)原式=(3)原式=(4)原式==8a3;=-125b3;=x2y4;=16x12.23a3(-5)3b3x2(y2)2(-2)4(x3)4典例精析().410124[()]2410122解:原式逆用幂的乘方的运算性质()810122幂的乘方的运算性质()8821222逆用同底数幂的乘法运算性质()821222逆用积的乘方的运算性质.4例2计算:an·bn=(ab)nam+n=am·anamn=(am)n作用:使运算更加简便快捷!积的乘方法则的逆用二(1)(ab2)3=ab6()×××(2)(3xy)3=9x3y3()×(3)(-2a2)2=-4a4()(4)-(-ab2)2=a2b4()1.判断:2.下列运算正确的是()A.x.x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x4C当堂练习(1)(ab)8;(2)(2m)3;(3)(-xy)5;(4)(5ab2)3;(5)(2×102)2;(6)(-3×103)3.3.计算:解:(1)原式=a8·b8;(2)原式=23·m3=8m3;(3)原式=(-x)5·y5=-x5y5;(4)原式=53·a3·(b2)3=125a3b6;(5)原式=22×(102)2=4×104;(6)原式=(-3)3×(103)3=-27×109=-2.7×1010.(1)2(x3)2·x3-(3x3)3+(5x)2·x7;(2)(3xy2)2+(-4xy3)·(-xy);(3)(-2x3)3·(x2)2.解:原式=2x6·x3-27x9+25x2·x7=2x9-27x9+25x9=0;解:原式=9x2y4+4x2y4=13x2y4;解:原式=-8x9·x4=-8x13.注意:运算顺序是先乘方,再乘除,最后算加减.4.计算:5.如果(an•bm•b)3=a9b15,求m,n的值.(an)3•(bm)3•b3=a9b15,a3n•b3m•b3=a9b15,a3n•b3m+3=a9b15,3n=9,3m+3=15.n=3,m=4.解:∵(an•bm•b)3=a9b15,课堂小结幂的运算性质性质am·an=am+n(am)n=amn(ab)n=anbn(m,n都是正整数)反向运用am·an=am+n、(am)n=amnan·bn=(ab)n可使某些计算简捷注意运用积的乘方法则时要注意:公式中的a,b代表任何代数式;每一个因式都要“乘方”;注意结果的符号、幂指数及其逆向运用(混合运算要注意运算顺序)
本文标题:2019秋八年级数学上册 第12章 整式的乘除 12.1 幂的运算 3 积的乘方课件(新版)华东师大
链接地址:https://www.777doc.com/doc-8248275 .html