您好,欢迎访问三七文档
知识点一百分位数一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.状元随笔可以通过下面的步骤计算一组n个数据的第p百分位数:第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.知识点二众数、中位数、平均数的概念1.众数:一组数据中,____________________的数据是众数.2.中位数:把一组数据按照________排成一列,把处在________的数据(或________________)叫做这组数据的中位数.3.平均数:如果有n个数x1,x2,x3,…,xn,那么这n个数的平均数为________________.重复出现次数最多大小顺序最中间两个数据的平均数1n(x1+x2+…+xn)状元随笔对众数、中位数、平均数的理解(1)众数、中位数与平均数都是描述一组数据集中趋势的量,平均数是最重要的量.(2)众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中部分数据多次重复出现时,其众数往往更能反映问题.(3)中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能在所给的数据中,也可能不在所给的数据中.(4)实际问题中求得的平均数、众数和中位数应带上单位.知识点三标准差、方差1.标准差的计算公式标准差是样本数据到平均数的一种平均距离,一般用s表示,s=____________________________________.2.方差的计算公式标准差的平方s2叫做方差.s2=__________________________________________,其中,xi(i=1,2,…,n)是________,n是________,x是________.1n[x1-x2+x2-x2+…+xn-x2]1n[(x1-x)2+(x2-x)2+…+(xn-x)2]样本数据样本容量平均数状元随笔对方差与标准差概念的理解(1)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.(2)标准差、方差的取值范围:[0,+∞).标准差、方差为0时,样本各数据全相等,表明数据没有波动幅度,数据没有离散性.(3)因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.[教材解难]1.教材P204思考小明用统计软件计算了100户居民用水量的平均数和中位数.但在录入数据时,不小心把一个数据7.7录成了77.请计算录入数据的平均数和中位数,并与真实的样本平均数和中位数作比较.哪个量的值变化更大?你能解释其中的原因吗?提示:通过简单计算可以发现,平均数由原来的8.79t变为9.483t,中位数没有变化,还是6.6t.这是因为样本平均数与每一个样本数据有关,样本中的任何一个数据的改变都会引起平均数的改变;但中位数只利用了样本数据中间位置的一个或两个值,并未利用其他数据,所以不是任何一个样本数据的改变都会引起中位数的改变.因此,与中位数比较,平均数反映出样本数据中的更多信息,对样本中的极端值更加敏感.2.教材P210思考如何定义“平均距离”?提示:假设一组数据是x1,x2,…,xn,用x表示这组数据的平均数.我们用每个数据与平均数的差的绝对值作为“距离”,即|xi-x|(i=1,2,…,n)作为xi到x的“距离”.可以得到这组数据x1,x2,…,xn到x的“平均距离”为1ni=1n|xi-x|,为了避免式中含有绝对值,通常改用平方来代替,即1ni=1n(xi-x)2.[基础自测]1.求下列一组数据1,2,2,3,4,4,5,6,6,7的第30百分位数()A.2B.3C.4D.2.5解析:这组数据共10个,10×30%=3即第30百分位数是第3项数据.答案:A2.已知一组数据为20,30,40,50,50,60,70,80.其中平均数、中位数和众数的大小关系是()A.平均数中位数众数B.平均数中位数众数C.中位数众数平均数D.众数=中位数=平均数解析:平均数、中位数、众数皆为50,故选D.答案:D3.已知一组数据为-3,5,7,x,11,且这组数的众数为5,那么该组数据的中位数是()A.7B.5C.6D.11解析:由这组数据的众数为5,可知x=5,把这组数据由小到大排列为-3,5,5,7,11,则可知中位数为5.答案:B4.已知五个数据3,5,7,4,6,则该样本的标准差为________.解析:因为x=15×(3+5+7+4+6)=5,所以s=15×[3-52+…+6-52]=2.答案:2题型一总体百分位数的估计[教材P202例3]例1根据表1或图1,估计月均用水量的样本数据的80%和95%分位数.分组频数累积频数频率[1.2,4.2)正正正正230.23[4.2,7.2)正正正正正正320.32[7.2,10.2)正正130.13[10.2,13.2)正90.09[13.2,16.2)正90.09[16.2,19.2)正50.05[19.2,22.2)30.03[22.2,25.2)40.04[25.2,28.2]20.02合计1001.00表1图1【解析】由表1可知,月均用水量在13.2t以下的居民用户所占比例为23%+32%+13%+9%=77%.在16.2t以下的居民用户所占的比例为77%+9%=86%.因此,80%分位数一定位于[13.2,16.2)内.由13.2+3×0.80-0.770.86-0.77=14.2,可以估计月均用水量的样本数据的80%分位数约为14.2.类似地,由22.2+3×0.95-0.940.98-0.94=22.95,可以估计月均用水量的样本数据的95%分位数约为22.95.状元随笔在某些情况下,我们只能获得整理好的统计表或统计图,与原始数据相比,它们损失了一些信息.例如由表1我们知道在[16.2,19.2)内有5个数据,但不知道这5个数据具体是多少.此时,我们通常把它们看成均匀地分布在此区间上.教材反思求总体百分位数的估计,首先要从小到大排列数据,频率直方图看作数据均匀分布在直方图上,然后计算出i=n×p%,当i不是整数要取整,频率直方图要计算出比例值.跟踪训练1某中学高二(2)班甲、乙两名学生自进入高中以来,每次数学考试成绩情况如下:甲:95,81,75,91,86,89,71,65,76,88,94,110,107.乙:83,86,93,99,88,103,98,114,98,79,78,106,101.计算出学生甲、乙的第25,50的百分位数.解析:把甲、乙两名学生的数学成绩从小到大排序,可得甲:65,71,75,76,81,86,88,89,91,94,95,107,110.乙:78,79,83,86,88,93,98,98,99,101,103,106,114.由13×25%=3.25,13×50%=6.5.可得数据的第25,50百分位数为第4,7项数据,即学生甲的第25,50的百分位数为76,88.学生乙的第25,50的百分位数为86,98.题型二众数、中位数、平均数的应用[经典例题]例2某公司的33名员工的月工资(以元为单位)如下:职务董事长副董事长董事总经理经理管理员职员人数11215320月工资5500500035003000250020001500(1)求该公司员工月工资的平均数、中位数、众数;(精确到1元)(2)假设副董事长的月工资从5000元提升到20000元,董事长的月工资从5500元提升到30000元,那么新的平均数、中位数、众数又分别是多少?(精确到1元)(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.【解析】(1)平均数是x=5500+5000+3500×2+3000+2500×5+2000×3+1500×2033≈2091(元),中位数是1500元,众数是1500元.(2)新的平均数是x′=30000+20000+3500×2+3000+2500×5+2000×3+1500×2033≈3288(元),中位数是1500元,众数是1500元.(3)在这个问题中,中位数和众数都能反映出这个公司员工的工资水平.因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数偏差较大,所以平均数不能反映这个公司员工的工资水平.方法归纳(1)平均数计算方法①定义法:n个数据a1,a2,…,an的平均数a=a1+a2+…+ann.②利用加权平均数公式:在n个数据中,如果x1出现f1次,x2出现f2次,…,xk出现fk次(f1+f2+…+fk=n),则这n个数的平均数为:x=x1f1+x2f2+…+xkfkn.③当数据较大时,用公式x=x′+a简化计算.(2)中位数的求法①当数据个数为奇数时,中位数是按从小到大(或从大到小)的顺序依次排列的中间那个数.②当数据个数为偶数时,中位数为按从小到大(或从大到小)的顺序依次排列的最中间的两个数的平均数.跟踪训练2某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的平均分是85分,乙班学生成绩的中位数是83分,则x+y的值为________.解析:因为甲班学生成绩的平均分是85,所以78+79+85+80+x+80+96+927=85,解得x=5,又因为乙班学生成绩的中位数是83,所以y=3,所以x+y=8.答案:8题型三标准差、方差的应用[经典例题]例3甲、乙两机床同时加工直径为100mm的零件,为检验质量,各从中抽取6件测量,数据为:甲:9910098100100103乙:9910010299100100(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.【解析】(1)x甲=16(99+100+98+100+100+103)=100,x乙=16(99+100+102+99+100+100)=100.s2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73,s2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均值相同,又s2甲s2乙,所以乙机床加工零件的质量更稳定.方法归纳在实际应用中,常常把平均数与标准差结合起来进行决策,在平均值相等的情况下,比较方差或标准差以确定稳定性.跟踪训练3在本例中,若甲机床所加工的6个零件的数据全都加10,那么所得新数据的平均数及方差分别是多少?解析:甲的数据为99+10,100+10,98+10,100+10,100+10,103+10,平均数为100+10=110,方差仍为16[(109-110)2+(110-110)2+(108-110)2+(110-110)2+(110-110)2+(113-110)2]=73.
本文标题:2019-2020学年新教材高中数学 第九章 统计 9.2.2 总体百分位数的估计 9.2.3 总体
链接地址:https://www.777doc.com/doc-8264068 .html