您好,欢迎访问三七文档
知识导图学法指导1.用斜二测画法画直观图,关键是掌握水平放置的平面图形的直观图的画法,这是画空间几何体的直观图的基础.2.会用斜二测画法画出简单几何体的直观图.3.充分利用直观图的作图规则,顺利实现实物图与直观图之间的转化.高考导航掌握直观图的画法是学好立体几何的基础,必须熟练、准确地掌握常见几何体的直观图的画法.学习过程中要重点把握直观图与原图形之间的关系.知识点一用斜二测画法画水平放置的平面图形的直观图的步骤知识点二立体图形直观图的画法用斜二测画法画空间几何体的直观图时,与平面图形相比只多了一个z轴,其直观图中对应于z轴的是______,平面________表示水平平面,平面y′O′z′和x′O′z′表示________.已知图形中平行于z轴(或在z轴上)的线段,其________________都不变.z′轴x′O′y′竖直平面平行性和长度1.画水平放置的平面图形的直观图,关键是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.2.用斜二测画法画直观图要掌握水平长不变,垂线长减半,直角画45°(或135°).[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.()(2)用斜二测画法画平面图形的直观图时,平行的线段在直观图中仍平行,且长度不变.()××2.水平放置的梯形的直观图是()A.梯形B.矩形C.三角形D.任意四边形解析:斜二测画法的规则中平行性保持不变,故选A.答案:A3.利用斜二测画法可以得到:①水平放置的三角形的直观图是三角形;②水平放置的平行四边形的直观图是平行四边形;③水平放置的正方形的直观图是正方形;④水平放置的菱形的直观图是菱形.以上结论正确的是()A.①②B.①C.③④D.①②③④解析:根据斜二测画法的规则可知①②正确;对于③④,只有平行于x轴的线段长度不变,所以不正确.答案:A4.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形解析:如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2cm,所以OC=OD2+CD2=422+22=6(cm),所以OA=OC,故四边形OABC是菱形,故选C.答案:C类型一水平放置的平面图形的直观图的画法例1画一个锐角为45°的平行四边形ABCD的直观图(尺寸自定).【解析】(1)画轴:▱ABCD如图1所示,以直线AB为x轴,线段AB的垂直平分线为y轴,建立直角坐标系xOy,再建立斜坐标系x′O′y′,使∠x′O′y′=45°,如图2.(2)描点:在x′轴上以点O′为中点,取B′A′=BA,在y′轴上取O′D′=12OD,过D′作D′C′∥x′轴,且D′C′=DC,如图2.(3)连线:连接B′C′,A′D′,如图2.(4)成图:四边形A′B′C′D′即为一个锐角是45°的平行四边形ABCD的直观图.以直线AB为x轴,线段AB的垂直平分线为y轴,建立直角坐标系xOy,再建立斜坐标系x′O′y′,利用斜二测画法画直观图.方法归纳在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键,一般要使得平面多边形尽可能多的顶点在坐标轴上,便于画点;原图中的共线点,在直观图中仍是共线点;原图中的平行线,在直观图中仍是平行线.跟踪训练1画水平放置的直角梯形的直观图,如图所示.解析:(1)在已知的直角梯形OBCD中,以底边OB所在直线为x轴,垂直于OB的腰OD所在直线为y轴建立平面直角坐标系.画相应的x′轴和y′轴,使∠x′O′y′=45°,如图①②所示.(2)在x′轴上截取O′B′=OB,在y′轴上截取O′D′=12OD,过点D′作x′轴的平行线l,在l上沿x′轴正方向取点C′使得D′C′=DC.连接B′C′,如图②.(3)所得四边形O′B′C′D′就是直角梯形OBCD的直观图.如图③.观察图形先以OB为x轴,OD为y轴建平面直角坐标系,再用斜二测画直观图.类型二立体图形的直观图的画法例2画正六棱柱ABCDEF-A′B′C′D′E′F′的直观图(尺寸自定).【解析】如图(1).①画轴.画出x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.②画底面.以点O为中点,在x轴上取FO=OC,在y轴上取OM=ON=34FO,分别过点M,N作ED∥FO,AB∥FO,ED=AB=FO,且M,N分别为DE,AB的中点.连接BC,CD,EF,FA,得到正六棱柱的底面直观图ABCDEF.③画侧棱.在六边形ABCDEF所在平面的同侧过点A,B,C,D,E,F分别作z轴的平行线,在这些平行线上分别截取AA′,BB′,CC′,DD′,EE′,FF′都等于侧棱长.④成图.顺次连接A′,B′,C′,D′,E′,F′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线)就得到正六棱柱的直观图,如图(2)所示.建立坐标系,根据画轴、画底面、画侧棱的顺序画直观图.方法归纳(1)画柱体、锥体的直观图的步骤①画轴:通常以高所在直线为z′轴建系.②画底面:根据平面图形的直观图画法确定底面.③确定顶点:利用与z′轴平行或在z′轴上的线段确定有关顶点.④连线成图.(2)画台体的直观图的步骤①画轴:通常以高所在直线为z′轴建系.②画下底面.③画高,画上底面.④连线成图.跟踪训练2用斜二测画法画出六棱锥P-ABCDEF的直观图,其中底面ABCDEF为正六边形,点P在底面上的投影是正六边形的中心O(尺寸自定).解析:(1)画出六棱锥P-ABCDEF的底面.①在正六边形ABCDEF中,取AD所在的直线为x轴,线段AD的中垂线为y轴,两轴相交于点O(如图(1)),画相应的x′轴、y′轴、z′轴,三轴相交于点O′,使∠x′O′y′=45°,∠x′O′z′=90°(如图(2));②在图(2)中,以O′为中点,在x′轴上取A′D′=AD,在y′轴上取M′N′=12MN,以点N′为中点,画B′C′∥x′轴,且B′C′=BC,再以M′为中点,画E′F′∥x′轴,且E′F′=EF;③连接A′B′,C′D′,D′E′,F′A′,得到正六边形ABCDEF水平放置的直观图A′B′C′D′E′F′.(2)画正六棱锥P-ABCDEF的顶点.在z′轴的正半轴上取点P′,点P′异于点O′.(3)成图.连接P′A′,P′B′,P′C′,P′D′,P′E′,P′F′,并擦去x′轴、y′轴和z′轴,将被遮挡的线改为虚线,便可得到六棱锥P-ABCDEF的直观图P′-A′B′C′D′E′F′(如图(3)).建立坐标系,根据画底面、确定顶点、连线的顺序画直观图.类型三直观图与原平面图形的面积关系例3如图所示,四边形ABCD是一个梯形,CD∥AB,CD=AO=1,三角形AOD为等腰直角三角形,O为AB的中点,试求水平放置的梯形ABCD的直观图的面积.【解析】方法一在梯形ABCD中,AB=2,高OD=1,水平放置的梯形ABCD的直观图仍为梯形,且上底和下底的长度都不变,作D′E′⊥A′B′于E′,如图所示,在直观图中,O′D′=12OD=12,梯形A′B′C′D′的高D′E′=24,于是梯形A′B′C′D′的面积为12×(1+2)×24=328.方法二因为梯形ABCD的面积为1+2×12=32,所以直观图的面积为24×32=328.研究直观图的面积问题时,一定要注意:画三角形的直观图时,不仅是y′轴上的线段长度变为原来的一半,同时,y′轴与x′轴的夹角也变为45°(或135°),因此直观图中三角形的高不是原来高的一半.跟踪训练3已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,∠B′A′C′=90°,则△ABC的面积为________.解析:∵∠B′A′C′=90°,B′O′=C′O′=1,∴A′O′=1,∴△ABC的高为2,∴△ABC的面积为12×2×2=2.答案:2由斜二测画直观图,还原原图再计算.
本文标题:2019-2020学年高中数学 第一章 空间几何体 1.2 空间几何体的三视图和直观图课件 新人教A
链接地址:https://www.777doc.com/doc-8286352 .html