您好,欢迎访问三七文档
2.1随机抽样2.1.1简单随机抽样第二章统计课前自主预习一、简单随机抽样的定义设一个总体有N个个体,从中地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会,就把这种抽样方法叫做简单随机抽样.□01逐个不放回□02都相等二、简单随机抽样的分类及类型1.判一判(正确的打“√”,错误的打“×”)(1)简单随机抽样就是随便抽取样本.()(2)使用抽签法抽签时,后抽签的人占优势.()(3)利用随机数表抽样时,开始位置和读数方向可以任意选择.()××√2.做一做(1)从50份高三学生期中考试试卷中随机抽出15份进行教研分析,则下列说法正确的是()A.15名学生是样本B.50名学生是总体C.样本容量是15D.样本容量是50解析样本是抽取的15份试卷,总体是50份试卷,总体容量是50,样本容量是15.(2)下列调查:①每隔5年进行一次人口普查;②报社等进行舆论调查;③灯泡使用寿命的调查;④对入学报名者的学历检查;⑤从20台电视机中抽出3台进行质量检查,其中属于抽样调查的是()A.①②③B.②③⑤C.②③④D.①③⑤解析①④属于普查,不属于抽样调查.(3)(教材改编P57T2)下列抽样试验中,适合用抽签法的有()A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验解析A,D中总体的个数较大,不适于用抽签法;C中甲、乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看做是搅拌均匀了.故选B.课堂互动探究探究1简单随机抽样的判断例1下列5个抽样中,简单随机抽样的个数是()①从无数个个体中抽取50个个体作为样本;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴青海参加抗震救灾工作;④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签;⑤箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.A.0B.1C.2D.3[解析]根据简单随机抽样的特点逐个判断.①不是简单随机抽样,因为简单随机抽样要求被抽取的样本总体的个数是有限的;②不是简单随机抽样,虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”;③不是简单随机抽样,因为50名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求;④是简单随机抽样,因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样;⑤不是简单随机抽样,因为它是有放回抽样.综上,只有④是简单随机抽样.拓展提升简单随机抽样必须具备的特点(1)被抽取样本的总体中的个体数N是有限的.(2)抽取的样本是从总体中逐个抽取的.(3)简单随机抽样是一种不放回抽样.(4)简单随机抽样是一种等可能的抽样.如果四个特征有一个不满足,就不是简单随机抽样.【跟踪训练1】判断下面的抽样方法是否为简单随机抽样,并说明理由.(1)某班45名同学,指定个子最矮的5名同学参加学校组织的某项活动;(2)从20个零件中一次性抽出3个进行质量检查.解(1)不是简单随机抽样.因为指定个子最矮的5名同学,是在45名同学中特指的,不存在随机性,不是等可能抽样.(2)不是简单随机抽样.因为一次性抽取3个不是逐个抽取,不符合简单随机抽样的特征.探究2用抽签法抽取样本例2(1)上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法,则抽签法的序号是________.①将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,然后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;①②将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为啦啦队成员.(2)在社区公益活动中,某单位共有50名志愿者参与了报名,现要从中随机抽出6人参加一项活动,请用抽签法进行抽样,并写出过程.[答案](2)见解析[解析](1)①满足抽签法的特征,是抽签法;②不是抽签法,因为抽签法要求所有的号签编号互不相同,而②中39个白球无法相互区分.(2)第一步,将50名志愿者编号,号码为1,2,3,…,50;第二步,将号码分别写在大小、形状、质地都相同的纸条上,揉成团,制成号签;第三步,将所有号签放入一个不透明的箱子中,搅拌均匀;第四步,一次取出1个号签,连取6次(不放回抽取),并记录其编号;第五步,将对应编号的志愿者选出即可.拓展提升抽签法的五个步骤【跟踪训练2】从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.解第一步,将20架钢琴编号,号码是01,02,…,20.第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号.第五步,所得号码对应的5架钢琴就是要进行质量检查的对象.探究3用随机数表法抽取样本例3(1)要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号____________________.(下面抽取了随机数表第1行至第8行)227,665,650,267(2)现有一批零件,其编号为600,601,602,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查,若用随机数表法,怎样设计方案?[答案](2)见解析[解析](1)从随机数表第3行第6列的数2开始向右读,第一个小于850的数字是227,第二个数字是665,第三个数字是650,第四个数字是267,符合题意.(2)第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如:选第7行第6个数“7”,向右读;第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916;第三步,以上号码对应的10个零件就是要抽取的对象.(答案不唯一)拓展提升利用随机数表法抽样时应注意的问题(1)编号要求位数相同,若不相同需先调整到一致后再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从001开始编号那么所有个体的号码都必须用三位数字表示,即从001~100.很明显每次读两个数字要比读三个数字节省时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开始读数时,读数的方向可左、可右、可上、可下,但应是事先定好的.(4)读数不在总体编号内的和已取出的不算,依次下去,直至得到容量为n的样本.【跟踪训练3】总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()A.08B.07C.02D.01解析从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件的数字依次为02,14,07,01,故第5个数为01.故选D.1.抽签法的优缺点与操作步骤(1)优点:简单易行.当总体的个数不多时,使总体处于“搅拌均匀”的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性.(2)缺点:仅适用于个体数较少的总体.当总体容量非常大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平.(3)用抽签法从容量为N的总体中抽取一个容量为n的样本的步骤:①编号:给总体中的所有个体编号(号码可以从1到N);②制作号签:将1~N这N个号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条等制作);③均匀搅拌:将号签放在一个容器里,搅拌均匀;④抽取号码:每次从容器中不放回地抽取一个号签,连续抽取n次;⑤构成样本:从总体中将与抽到的号签上的号码一致的个体抽取,就构成了一个容量为n的样本.2.随机数法的优缺点及操作步骤(1)优点:简单易行.它很好地解决了当总体中的个体数较多时抽签法制签难的问题.(2)缺点:当总体中的个体数很多,需要的样本容量也较大时,用随机数法抽取样本仍不方便.(3)随机数法抽取样本的步骤:①编号:对总体的个体进行编号(每个号码位数一致);②选定初始值:在随机数表中任选一个数作为开始;③选号:从选定的数开始按一定的方向读下去,得到的号码若不在编号中,则跳过,若在编号中,则取出,如果得到的号码前面已经取出,也跳过,如此继续下去,直到取满为止;④确定样本:根据选定的号码抽取样本.3.抽签法与随机数法的区别抽签法适用于总体中个体数较少,样本容量也较小的抽样,随机数法适用于总体中个体数较多,但样本容量较小的抽样.随堂达标自测1.某学校为了解高一800名新入学同学的数学学习水平,从中随机抽取100名同学的中考数学成绩进行分析,在这个问题中,下列说法正确的是()A.800名同学是总体B.100名同学是样本C.每名同学是个体D.样本容量是100解析据题意,总体是指800名新入学同学的中考数学成绩,样本是指抽取的100名同学的中考数学成绩,个体是指每名同学的中考数学成绩,样本容量是100.故只有D正确.2.下列抽样方法是简单随机抽样的是()A.从100个学生家长中一次性随机抽取10人做家访B.从38本教辅参考资料中有放回地随机抽取3本作为教学参考C.从自然数集中一次性抽取20个进行奇偶性分析D.某参会人员从最后一排20个座位中随机选择一个坐下解析A不是简单随机抽样,因为是“一次性”抽取;B不是简单随机抽样,因为是“有放回”抽取;C不是简单随机抽样,因为是“一次性”抽取,且“总体容量无限”.D是简单随机抽样.3.从52名学生中选取5名学生参加“希望杯”全国数学邀请赛,若采用简单随机抽样抽取,则每人入选的可能性()A.都相等,且为152B.都相等,且为110C.都相等,且为552D.都不相等解析对于简单随机抽样,在抽样过程中每一个个体被抽取的机会都相等(随机抽样的等可能性).若样本容量为n,总体的个体数为N,则用简单随机抽样时,每一个个体被抽到的可能性都是nN,体现了这种抽样方法的客观性和公平性.因此每人入选的可能性都相等,且为552.4.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该产品的合格率约为()A.36%B.72%C.90%D.25%解析3640×100%=90%.5.为了了解参加某次数学知识竞赛的80名学生的成绩,决定从中抽取20名学生的试卷进行分析,写出抽样过程.(注:用随机数表法)解抽样过程如下:第一步,先将80名学生编号,可以编号为00,01,02,…,79.第二步,在随机数表(见教材第103页)中任选一个数,例如选出第2行第9列的数6.第三步,从选定的数6开始向右读,每次读取两位,凡不在00~79中的数跳过去不读,前面已经读过的数也跳过去不读,按照这种方法可取出62,42,14,57,20,…,直到样本的20个号码全部取出.第四步,以上20个号码所对应的20名学生的试卷就组成了一个容量为20的样本.
本文标题:2019-2020学年高中数学 第二章 统计 2.1 随机抽样 2.1.1 简单随机抽样课件 新人教
链接地址:https://www.777doc.com/doc-8288698 .html