您好,欢迎访问三七文档
第四课时数列的求和(习题课)分组转化法求和[典例]已知数列{cn}:112,214,318,…,试求{cn}的前n项和.[解]令{cn}的前n项和为Sn,则Sn=112+214+318+…+n+12n=(1+2+3+…+n)+12+14+18+…+12n=nn+12+121-12n1-12=nn+12+1-12n.即数列{cn}的前n项和为Sn=n2+n2+1-12n.当一个数列本身不是等差数列也不是等比数列,但如果它的通项公式可以拆分为几项的和,而这些项又构成等差数列或等比数列,那么就可以用分组求和法,即原数列的前n项和等于拆分成的每个数列前n项和的和.[活学活用]1.已知Sn为数列{an}的前n项和,若an(4+cosnπ)=n(2-cosnπ),则S20=()A.31B.122C.324D.484解析:∵an(4+cosnπ)=n(2-cosnπ),∴当n=2k-1(k∈N*)时,an=n;当n=2k(k∈N*)时,an=n5.∴an=n,n为奇数,n5,n为偶数.∴a1=1,a2=25,a3=3,a4=45,a5=5,….∴S20=(1+3+…+19)+25+45+…+205=10×1+192+15×10×2+202=122.故选B.答案:B2.已知数列{an}的首项a1=3,通项an=2np+nq(n∈N*,p,q为常数),且a1,a4,a5成等差数列.(1)求p,q的值;(2)求数列{an}前n项和Sn的公式.解:(1)由a1=3,得2p+q=3,又因为a4=24p+4q,a5=25p+5q,且a1+a5=2a4,得3+25p+5q=25p+8q,解得p=1,q=1.(2)由(1),知an=2n+n,所以Sn=(2+22+…+2n)+(1+2+…+n)=2n+1-2+nn+12.裂项相消法求和[典例]已知等比数列{an}的各项均为正数,且2a1+3a2=1,a23=9a2a6.(1)求数列{an}的通项公式;(2)设bn=-log3an,求数列1bnbn+1的前n项和Tn.[解](1)设数列{an}的公比为q,由a23=9a2a6得a23=9a24,∴q2=19.由条件可知q0,故q=13.由2a1+3a2=1得2a1+3a1q=1,∴a1=13.故数列{an}的通项公式为an=13n.(2)∵an=13n,∴bn=-log313n=2n,∴1bnbn+1=14nn+1=141n-1n+1,∴Tn=141-12+12-13+…+1n-1n+1=141-1n+1=n4n+1.(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项求和的几种常见类型:①1nn+k=1k1n-1n+k;②1n+k+n=1kn+k-n;③12n-12n+1=1212n-1-12n+1;④若{an}是公差为d的等差数列,则1anan+1=1d1an-1an+1.[活学活用]已知等差数列{an}的前n项和为Sn,且S3=15,a5+a9=30.(1)求an及Sn;(2)若数列{bn}满足bn(Sn-n)=2(n∈N*),数列{bn}的前n项和为Tn,求证:Tn2.解:(1)设等差数列{an}的公差为d,由题意可得a1+a2+a3=15,a5+a9=30⇒3a1+3d=15,2a1+12d=30⇒a1=3,d=2,则an=3+2(n-1)=2n+1Sn=3n+2nn-12=n2+2n.(2)证明:由题意可得bn=2Sn-n=2n2+n=21n-1n+1,∴Tn=b1+b2+…+bn=21-12+12-13+…+1n-1n+1=21-1n+12.错位相减法求和[典例]已知数列{an}的首项a1=23,an+1=2anan+1,n=1,2,3,….(1)证明:数列1an-1是等比数列;(2)求数列nan的前n项和Sn.[解](1)证明:由an+1=2anan+1,所以1an+1=an+12an=12+12×1an,所以1an+1-1=121an-1,又a1=23,所以1a1-1=12,所以数列1an-1是以12为首项,12为公比的等比数列.(2)由(1)得1an-1=12×12n-1=12n,即1an=12n+1,所以nan=n2n+n.设Tn=12+222+323+…+n2n,①则12Tn=122+223+…+n-12n+n2n+1,②由①-②得12Tn=12+122+…+12n-n2n+1=121-12n1-12-n2n+1=1-12n-n2n+1,Tn=2-12n-1-n2n.又1+2+3+…+n=nn+12,所以数列nan的前n项和Sn=2-2+n2n+nn+12=n2+n+42-n+22n.如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法.在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式.[活学活用]数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.(1)证明:数列ann是等差数列;(2)设bn=3n·an,求数列{bn}的前n项和Sn.解:(1)证明:由已知可得an+1n+1=ann+1,即an+1n+1-ann=1.所以ann是以a11=1为首项,1为公差的等差数列.(2)由(1)得ann=1+(n-1)·1=n,所以an=n2.从而bn=n·3n.Sn=1·31+2·32+3·33+…+n·3n,①3Sn=1·32+2·33+…+(n-1)·3n+n·3n+1.②①-②得-2Sn=31+32+…+3n-n·3n+1=3·1-3n1-3-n·3n+1=1-2n·3n+1-32.所以Sn=2n-1·3n+1+34.
本文标题:2019-2020学年高中数学 第二章 数列 2.3 等比数列 第四课时 数列的求和(习题课)课件
链接地址:https://www.777doc.com/doc-8288891 .html