您好,欢迎访问三七文档
数学必修②·人教A版新课标导学第二章点、直线、平面之间的位置关系2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定1自主预习学案2互动探究学案3课时作业学案自主预习学案一个人走在灯火通明的大街上,会在地面上形成影子,随着人不停走动,这个影子忽前忽后、忽左忽右,但无论怎样,人始终与影子相交于一点,并始终保持垂直.你承认这个事实吗?为什么?1.直线与平面垂直定义如果直线l与平面α内的____________直线都垂直,我们就说直线l与平面α互相垂直记法l⊥α有关概念直线l叫做平面α的________,平面α叫做直线l的__________.它们唯一的公共点P叫做________.任意一条垂线垂面垂足图示画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直[归纳总结](1)定义中的“任意一条直线”这一词语与“所有直线”是同义语,与“无数条直线”不是同义语.(2)直线与平面垂直是直线与平面相交的一种特殊形式.(3)由直线与平面垂直的定义,得如果一条直线垂直于一个平面,那么这条直线垂直于该平面内的任意一条直线.2.判定定理文字语言一条直线与一个平面内的两条________直线都垂直,则该直线与此平面垂直图形语言符号语言l⊥a,l⊥b,a⊂α,b⊂α,___________⇒l⊥α作用判断直线与平面垂直相交a∩b=P[归纳总结]直线与平面垂直的判定定理告诉我们:可以通过直线间的垂直来证明直线与平面垂直.通常我们将其记为“线线垂直,则线面垂直”.因此,处理线面垂直转化为处理线线垂直来解决.也就是说,以后证明一条直线和一个平面垂直,只要在这个平面内找到两条相交直线和已知直线垂直即可.3.直线和平面所成的角(1)定义:一条直线和一个平面相交,但不和这个平面________,这条直线叫做这个平面的斜线,斜线和平面的________叫做斜足.过斜线上斜足以外的一点向平面引垂线,过________和________的直线叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的________,叫做这条直线和这个平面所成的角.(2)规定:一条直线垂直于平面,我们说它们所成的角等于________;一条直线和平面平行,或在平面内,我们说它们所成的角等于_______.因此,直线与平面所成的角的范围是_________________.垂直交点垂足斜足锐角90°0°[0°,90°]1.直线l⊥平面α,直线m⊂α,则l与m不可能()A.平行B.相交C.异面D.垂直[解析]∵直线l⊥平面α,∴l与α相交,又∵m⊂α,∴l与m相交或异面,由直线与平面垂直的定义,可知l⊥m.故l与m不可能平行.A2.直线l与平面α内的无数条直线垂直,则直线l与平面α的关系是()A.l和平面α相互平行B.l和平面α相互垂直C.l在平面α内D.不能确定[解析]如下图所示,直线l和平面α相互平行,或直线l和平面α相互垂直或直线l在平面α内都有可能.故选D.D3.(2018~2019·福州高二检测)在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则P到BC的距离是()A.5B.25C.35D.45D[解析]取BC的中点D,∵AB=AC,∴AD⊥BC.又∵PA⊥平面ABC,∴PA⊥BC.又PA∩AD=D,∴BC⊥平面PAD,∴BC⊥PD.∵在△ABC中,AB=AC=5,BC=6,∴AD=4,∴PD=PA2+AD2=45.故选D.互动探究学案命题方向1⇨线面垂直的判定如图,P为△ABC所在平面外一点,PA⊥平面ABC,∠ABC=90°,AE⊥PB于E,AF⊥PC于F.求证:(1)BC⊥平面PAB;(2)AE⊥平面PBC;(3)PC⊥平面AEF.典例1[思路分析]本题是证线面垂直问题,要多观察题目中的一些“垂直”关系,看是否可利用.如看到PA⊥平面ABC,可想到PA⊥AB、PA⊥BC、PA⊥AC,这些垂直关系我们需要哪个呢?我们需要的是PA⊥BC,联系已知,问题得证.[解析](1)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC.∵∠ABC=90°,∴AB⊥BC.又AB∩PA=A,∴BC⊥平面PAB.(2)∵BC⊥平面PAB,AE⊂平面PAB,∴BC⊥AE.∵PB⊥AE,BC∩PB=B,∴AE⊥平面PBC.(3)∵AE⊥平面PBC,PC⊂平面PBC,∴AE⊥PC.∵AF⊥PC,AE∩AF=A,∴PC⊥平面AEF.『规律方法』线面垂直的判定方法:(1)证明线面垂直的方法①线面垂直的定义.②线面垂直的判定定理.③如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.④如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.(2)利用直线与平面垂直的判定定理判定直线与平面垂直的步骤:①在这个平面内找两条直线,使它和这条直线垂直;②确定这个平面内的两条直线是相交的直线;③根据判定定理得出结论.(3)利用直线与平面垂直的判定定理判定直线与平面垂直的技巧:证明线面垂直时要注意分析几何图形,寻找隐含的和题目中推导出的线线垂直关系,进而证明线面垂直.三角形全等、等腰三角形底边的中线、高;菱形、正方形的对角线、三角形中的勾股定理的逆定理等都是找线线垂直的方法.〔跟踪练习1〕如图,在△ABC中,∠ABC=90°,D是AC的中点,S是△ABC所在平面外一点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.[解析](1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS,所以SD⊥BD,又AC∩BD=D,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC,由(1)知SD⊥BD,又因为SD∩AC=D,所以BD⊥平面SAC.命题方向2⇨直线与平面所成的角在正方体ABCD-A1B1C1D1中,(1)求直线A1C与平面ABCD所成的角的正切值;(2)求直线A1B与平面BDD1B1所成的角.典例2[思路分析](1)求线面角的关键是找出直线在平面内的射影,为此须找出过直线上一点的平面的垂线.(2)过A1作平面BDD1B1的垂线,该垂线必与B1D1、BB1垂直,由正方体的特性知,直线A1C1满足要求.[解析](1)∵直线A1A⊥平面ABCD,∴∠A1CA为直线A1C与平面ABCD所成的角,设A1A=1,则AC=2,∴tan∠A1CA=22.(2)连接A1C1交B1D1于O,在正方形A1B1C1D1中,A1C1⊥B1D1,∵BB1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴BB1⊥A1C1,又BB1∩B1D1=B1,∴A1C1⊥平面BDD1B1,垂足为O.∴∠A1BO为直线A1B与平面BDD1B1所成的角,在Rt△A1BO中,A1O=12A1C1=12A1B,∴∠A1BO=30°.即A1B与平面BDD1B1所成的角为30°.『规律方法』求线面角的方法:(1)求直线和平面所成角的步骤:①寻找过斜线上一点与平面垂直的直线;②连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;③把该角归结在某个三角形中,通过解三角形,求出该角.(2)求线面角的技巧:在上述步骤中,其中作角是关键,而确定斜线在平面内的射影是作角的关键,几何图形的特征是找射影的依据,射影一般都是一些特殊的点,比如中心、垂心、重心等.〔跟踪练习2〕如图,在三棱柱ΑΒC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.[解析](1)取BC的中点E,连接A1E、DE、AE,由题意得A1E⊥平面ABC,所以A1E⊥AE,因为AB=AC,所以AE⊥BC,因为A1E∩BC=E,所以AE⊥平面A1BC,由D、E分别是B1C1、BC的中点,得DE∥B1B且DE=B1B,所以DE∥A1A,所以四边形A1AED是平行四边形,故A1D∥AE,又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)作A1F⊥DE,垂足为F,连接BF.因为A1E⊥平面ABC,所以BC⊥A1E.因为BC⊥AE,所以BC⊥平面AA1DE.所以BC⊥A1F,A1F⊥平面BB1C1C.所以∠A1BF为直线A1B与平面BB1C1C所成的角.由AB=AC=2,∠CAB=90°,得EA=EB=2.由∠A1EA=∠A1EB=90°,得A1A=A1B=4,A1E=14.由DE=BB1=4,DA1=EA=2,∠DA1E=90°,得A1F=72.所以sin∠A1BF=78.线线垂直和线面垂直的相互转化(2018~2019·湖南张家界高一期末)如图,在棱长均为1的直三棱柱ABC-A1B1C1中,D是BC的中点.(1)求证:AD⊥平面BCC1B1;(2)求直线AC1与平面BCC1B1所成角的正弦值.典例3[解析](1)证明:直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∴BB1⊥AD,∵AB=AC,D是BC的中点,∴AD⊥BC.又BC∩BB1=B,∴AD⊥平面BCC1B1.(2)解:连接C1D.由(1)AD⊥平面BCC1B1,则∠AC1D即为直线AC1与平面BCC1B1所成角.在Rt△AC1D中,AD=32,AC1=2,sin∠AC1D=ADAC1=64,即直线AC1与平面BCC1B1所成角的正弦值为64.〔跟踪练习3〕如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE.求证:AE⊥BE.[证明]∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE.又AE⊂平面ABE,∴AE⊥BC.∵BF⊥平面ACE,AE⊂平面ACE,∴AE⊥BF.∵BF⊂平面BCE,BC⊂平面BCE,BF∩BC=B,∴AE⊥平面BCE.又BE⊂平面BCE,∴AE⊥BE.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC=BC,D是AB的中点,连接CD.求证:CD⊥平面ABB1A1.典例4逻辑推理不严密致误[错解]∵AA1⊥平面ABC,CD⊂平面ABC,∴CD⊥AA1.又BB1∥AA1,∴CD⊥BB1,又AA1⊂平面ABB1A1,BB1⊂平面ABB1A1,∴CD⊥平面ABB1A1.[错因分析]错解中AA1和BB1是平面ABB1A1内的两条平行直线,不是相交直线,故不满足直线与平面垂直的判定定理的条件.[正解]∵AA1⊥平面ABC,CD⊂平面ABC,∴CD⊥AA1.又AC=BC,D是AB的中点,∴CD⊥AB.∵AB⊂平面ABB1A1,AA1⊂平面ABB1A1,AB∩AA1=A,∴CD⊥平面ABB1A1.[警示]用判定定理证明线面垂直时,必须要找全条件,这些条件必须是已知的、或明显成立的、或已经证明的.1.如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边.则能保证该直线与平面垂直的序号有()A.①③B.①②C.②④D.①④[解析]三角形的两边,圆的两条直径一定是相交直线,而梯形的两边,正六边形的两条边不一定相交,所以保证直线与平面垂直的是①③.A2.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为()A.223B.23C.24D.13D[解析]∵AA1⊥平面A1B1C1D1,∴∠AC1A1为直线AC1与平面A1B1C1D1所成角,∵AA1=1,AB=BC=2,∴AC1=3,∴sin∠AC1A1=AA1AC1=13.3.如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数有_____个.[解析]∵PA⊥平面ABC,∴PA⊥AB,PA⊥AC,PA⊥BC.∴△PAB、△PAC为直角三角形.∵BC⊥AC,PA∩AC=A,∴BC⊥平面PAC.∴BC⊥AC,BC⊥PC.∴△ABC、△PBC为直角三角形.44.如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,
本文标题:2019-2020学年高中数学 第2章 点、直线、平面之间的位置关系 2.3.1 直线与平面垂直的判
链接地址:https://www.777doc.com/doc-8291614 .html