您好,欢迎访问三七文档
无理数教学设计第一款:《认识无理数》教学设计《认识无理数》徐涛平山乡后山小学教学设计教学目标:(一)知识目标:1、通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性。2、能判断给出的数是否为有理数;并能说出理由。(二)能力训练目标:1、让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神。2、通过回顾有理数的有关知识,让学生能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力。(三)情感与价值观目标:1、激励学生积极参与教学活动,提高学习数学的热情。2、引导学生充分进行交流、讨论与探索等教学活动,培养他们合作与钻研精神。3、了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神。教学重点:1、让学生经历无理数发现的过程。感知生活中确实存在着不同于有理数的数。2、会判断一个数是否为有理数。教学难点:1、把两个边长为1的正方形拼成一个大正方形的动手操作过程。2、判断一个数是否为有理数。教学过程:(一)创设情境,导入新课:讲故事:(播放课件)早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,他认为在生活中还存在除有理数之外的另一种数。[师]到底谁的观点正确呢?我们以前学的有理数范围是否能满足我们实际生活的需要呢?这节课我们就共同来研究这个问题。(板书课题)学生认真听故事。做好学前准备。(本环节设计意图:以故事引入新课首先能激起学生的学习兴趣,同时让学生带着问题听讲新课会收到良好的效果。)(二)操作观察,总结归纳:1、分组活动:[师]请学生拿出课前准备好的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形。学生分小组讨论,组长带领组员动手剪、拼。各小组组长展示自己的操作成果(利用投影仪)教师演示拼图过程(播放课件)2、探索新知[师]a2=2中a是整数吗?是分数吗?[甲生]因为12=1,22=4所以a应在1和2之间,故a不能是整数。[乙生]因为两个相同因数的乘积都为分数,所以a不可能是分数。[师]同学们说的都不错,我们可以来回顾一下前面学过的有理数的范围。[生]有理数包括整数、分数。[师]经过我们刚才的分析可知,在a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数。看来我们学的有理数的范围又不够用了。3、做一做:(播放课件)(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)正方形的边长为b,则b应满足什么条件?b是有理数吗?[师]我们先来回顾一下勾股定理的内容。[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2。[师]在这题中,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?[甲生]因为22=4,32=9,所以b不可能是整数。[乙生]没有两个相同的分数相乘得5,所以b不可能是分数。[丙生]因为没有一个整数或分数的平方为5,所以b不可能有理数。[师]同学们说的很正确,生活中确实存在不同于有理数的数,它就是——无理数。下面我们继续看课前播放的故事。(播放课件)希伯索斯当时的发现动摇了毕达哥拉斯学派的信条,他们试图封锁这一发现,然而希伯索斯早己将这个发现偷偷传播出去了。可是后来还是被毕氏围捕,投进了大海,从而献出了宝贵的生命。但真理是不可战胜的,后来古希腊人证实了希伯索斯的发现。[师]我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神。(本环节设计意图:让学生分组讨论、合作、交流,培养了学生新的学习方法,加强了学生团结、协作的能力。了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神。)(三)巩固练习,深化认识:1、如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?[师]找两生板演,其余在练习本上完成。[生]由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3。h不可能是整数,也不可能是分数。2、为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗?[生]a的值大约是2.2,这个值不可能是分数。师总结,同时了解其余学生的做题情况。(本环节设计意图:练习的目的既是检查又是巩固、深化,帮助学生对本节课所学的知识形成更为清晰和深刻的认识,同时可以让学生在探索与被肯定当中获得积极的情感体验。)(四)课堂小结,课外延伸:[师]通过今天这节课的学习你都有哪些收获?[甲生]通过拼图活动,经历无理数产生的实际背景,我感受到生活中不仅有理数,还有无理数。[乙生]会判断一个数是否为有理数。(只要学生回答的有道理,教师就要给予肯定。[师]希望同学们课后能在生活中寻找这类不同于有理数的数。(本环节设计意图:这部分有两个作用:一是培养学生归纳梳理知识的良好学习习惯和能力;二是培养学生用数学的眼光观察生活,感受到数学和生活的联系,激发学生学习数学的兴趣。)(五)课后作业:1、必做题:课本习题2、选做题:课本“试一试”(本环节设计意图:考虑学生的实际情况分层布置作业,必做题面向全体,让学生在巩固知识的同时,有一定的创新空间,选做题供学有余力的同学研究、提高。)第二篇范文:认识无理数第二章实数1认识无理数【知识与技能】1.通过拼图活动,让学生感受无理数产生的必要性.2.借助计算器探索无理数是无限不循环小数.3.会判断一个数是有理数还是无理数.【过程与方法】让学生亲自动手做拼图活动,培养学生的动手能力和合作精神,通过辨别一个数是有理数还是无理数,训练大家的思维判断能力.【情感态度】1.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神.2.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.【教学重点】1.无理数的探索过程.2.了解无理数与有理数的区别,并能正确判断.【教学难点】把两个边长为1的正方形拼成一个大正方形的动手操作过程.一、创设情境,导入新课同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?在小学我们学过自然数、小数、分数.在初一我们还学过负数.对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.【教学说明】随着学习的深入,知识层次的提高,有理数的范围不能适应现代生活的需要,这就要对数进行扩充,为学生学习新知识作准备.二、思考探究,获取新知无理数的概念拼一拼:请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?【教学说明】通过小组合作交流,动手操作得到一个大的正方形,学生非常高兴地投入到活动中,调动了学生的积极性.同学们展示,拼图的结果.下面大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?【教学说明】探索拼图的过程,对于学生理解大正方形的边长是a是不是有理数很有帮助.【归纳结论】因为12=1,22=4,32=9,……整数的平方越来越大,所以a应在1和2之间,故a不可能是整数,又(1/2)2=1/4,(1/3)2=1/9,(2/3)2=4/9,…两个相同因数的乘积都为分数,所以a不可能是分数.做一做:大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.【教学说明】结合图形,让学生进一步理解面积为2的正方形边长不是有理数,而是一种新数.同学们能不能确定一下面积为2的正方形的边长为a的大致范围呢?请大家用计算器探索,用表格的形式整理如下.还可以进行下去吗?a是有限小数吗?【教学说明】教师引导学生探索,让学生对这种不是有理数的新数有了初步的认识,为下面引出无理数的概念打下了基础.【归纳结论】像这种无限不循环小数就叫做无理数.如:圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数,它们都能化成有限小数或循环小数,这些数都是有理而3,45,0.38,0.17数.三、运用新知,深化理解1.判断题(1)有理数与无理数的差都是有理数.(2)无限小数都是无理数.(3)无理数都是无限小数.(4)两个无理数的和不一定是无理数.2.下列各数中,哪些是有理数?哪些是无理数?0.351,-23,4.9·6·,3.14159,-5.2323332…,123456789101112…(由相继的正整数组成).在下列每一个圈里,至少填入三个适当的数.【教学说明】学生自主完成,加深了对无理数的理解以及有理数与无理数的区别所在,让学生的疑难及时得到矫正与强化.【答案】1.(1);(2);(3)√;(4)√;,3.14159;-5.2323332…,123456789101112…(由2.0.351,-2/3,4.96相继的正整数组成).四、师生互动,课堂小结通过本节课的学习,你是如何判断一个数是有理数还是无理数?还有哪些困难?【教学说明】引导学生寻找知识点间的区别和联系,加深对易错点的理解,有助于学生正确解题.1.习题2.2第1、2、3题.2.完成本课时练习部分.这节课的内容是无理数的概念以及判断一个数是有理数还是无理数.是数的范围的又一次扩充,是很重要的一节.培养了学生分类归纳的思想.但对概念的理解掌握一些同学还不是很好,只能在以后的教学过程中不断的完善.第三篇范文:认识无理数.1认识无理数1教案2.1认识有理数(1)教学目标知识与技能1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.过程与方法1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.情感与价值观1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一、创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二、讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方
本文标题:无理数教学设计
链接地址:https://www.777doc.com/doc-8293744 .html