您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 用转化法解决问题的策略教案
用转化法解决问题的策略(1)教材苏教版六年级数学教科书71页内容。教学目标1.使学生初步学着运用转化的策略分析问题,灵活确定解决问题的思路,根据问题特点确定具体的转化方法。2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化法在解决问题时的价值。3.积累解决问题的经验,增强解决问题时的“转化”意识,提高学好数学的信心。教学重点感受“转化”策略的价值,能用“转化”的策略解决问题。教学难点能用“转化”的策略解决问题。教具准备多媒体课件教学过程一、课前热身,预伏“转化”1.脑筋急转弯游戏。2.送给学生一句话(课件出示):什么是解题?解题就是把题目转化为已经解决过的题。师:这是前苏联一位著名的数学家说的,这句话道出了数学解题常用的方法——转化。就让我们记住这句话进入今天的学习。(评析:脑筋急转弯游戏和送给学生的一句话中都蕴含着转化的思想,在创设情境中,让学生初步感知转化)二、观察交流,明确转化策略1.多媒体出示图片(像花瓶的图形),让学生比一比两个图形面积大小。师:你会求出它的面积吗?不会不要紧,当我们遇到难题时,可以先放一放,从简单的入手。多媒体出示第二幅图。(例1的左半图)师:这幅图的面积你会求吗?指名说方法,并演示。师:把原来的图形转化为我们熟悉的长方形,再求面积就简单多了。这就是解决问题的策略。(板书:解决问题的策略)2.师:用这种策略能解决我们刚才解决不了的问题吗?(多媒体出示例1的右半图)学生动笔画一画,动手剪一剪,也可以和小组内的同学交流自己的想法。展示学生方法。3.师:再让你比较这两幅图形的面积大小,你会吗?其实,这就是我们课本的例1,虽然是新知,可是通过大家的探索与努力,已不再是难题。看一看我们课本是怎样解决的?学生自学例1。多媒体演示过程。师:这就是解决问题的一种重要策略——转化(板书:转化)(评析:通过例1的教学让学生联系实际感悟转化的含义,体会无论在过去还是现在,转化都是解决问题的有效方法。其实学生在平时学习数学的过程中,在不自觉中就经常使用转化策略,这些都是感悟策略的宝贵资源。在学生探索解决问题时,教师根据数学知识发生形成的过程,设计具有内在联系和一定梯度的数学问题,并引导学生通过自己的积极思维,沿着“问题系列”拾级而上)三、回顾转化实例,感受转化价值1.引导:其实,在以往的学习中,我们早就运用转化这种策略了,只不过当时大家不知道它的名称而已,现在你能回顾一下,我们曾经运用转化的策略解决过哪些数学问题呢?2.学生充分列举。3.指名汇报。(学生汇报时,用多媒体演示)4.小结:转化是一种常见的,也是重要的解决问题的策略。在我们以往的学习中,早就运用这一策略分析并解决问题了。以后再遇到一个陌生的问题时,你会怎样想?(评析:引导学生总结回顾在过去的学习中,曾经运用转化的策略解决过的问题,从策略的角度重新建立相关知识的联系,从而使学生逐步深化对转化策略的认识。设计丰富的实例,有助于学生更清晰地体会以前解决一个新问题时,通常都是想办法把它转化成熟悉的、曾经解决过的问题。从策略的高度引导学生认识相关知识的联系,充分利用学生已有的知识经验,深化对转化策略的体验)四、运用策略,体验“转化”师:孩子们,看来转化这种策略还真是蛮好的,想动笔试一试,感受转化的好处吗?出示“试一试”中的算式,提问,这题可以怎样计算?点拨:我们还可以借助什么策略来尝试解决问题?当学生说出画图时,课件显示一个正方体。引导学生说出如何在其中分别表示出1/2,1/4,1/8,1/16。(多媒体同步演示)引导:看图想一想,可以把这一算式转化成怎样的算式计算?可提示:能不能根据空白部分求出涂色部分?拓展:计算1/2+1/4+1/8+1/16+1/32=?小组讨论。小结:利用画图,就可以更加灵活地转化。(评析:教学时采用小组合作讨论的办法,为更多的同学提供观察和自主探索的空间。在经历了大量的回顾和讨论之后,学生可以发现:通常我们可以将新的问题转化为熟悉的、能够解决的问题,把非常规的问题转化为常规的问题等。既充分考虑了学生的思维发展水平,又便于学生实实在在地掌握转化的策略)五、解决问题,灵活“转化”1.练一练1。指导完成“练一练”。出示方格纸上的两个图形,让学生思考怎样计算右边图形的周长比较简便。学生自主转化后交流并小结:可以把这个图形转化成长方形计算周长。提问:如果每个小方格的边长是1厘米,右边图形的周长是多少厘米?2.练习十四第二题:用分数表示图中的涂色部分。先独立看图填空,再交流是怎样想到转化的方法的,以及分别是怎样转化的?(要求说清旋转、平移的路径)多媒体着重演示第3小题的转化方法。(允许有不同的思路)3.练习十四。第一题出示问题文字,指导学生理解。提问:想借助什么策略来解决?(转化)怎样才能灵活转化?(画图)明确图中每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。单场淘汰制就是每场比赛都要淘汰1支球队。然后用多媒体演示画图过程。提问:如果不画图,有更简便的计算方法吗?可提示:最后赛出冠军时,剩下几支球队?说明要淘汰多少支球队?拓展:如果有64支球队,产生冠军一共要比赛多少场?提问:这时,借助画图来转化,方便吗?小结:转变角度,也可以更加灵活地转化。所以,我们要随机应变。(评析:借助直观图,启发学生发现转化的具体方法,为具有不同层次的思维水平的学生设置了必要的台阶,也充分反映了化抽象为具体的解题策略。教师问题的设计也有助于学生体会运用转化的策略灵活变换思考问题的角度,能手找到简洁的解题方法)六,故事启迪,领悟转化技巧1.爱迪生求灯泡容积的故事。先让学生读故事的前半部分,自己想一想,如果是你,你会怎么办?2.总结。小结:解决数学问题时,常常离不开转化。复杂转化为简单,陌生转化为熟悉,未知转化为已知。(评析:通过讲述爱迪生巧用转化的策略来求灯泡的容积这个故事,联系所学知识,也进一步激发了学生的课后探求欲,调动学习的积极性,同时又巩固了转化策略)总评本课内容是六年级下册第六单元《解决问题的策略》的第一课时,是在学生已经学习了画图,列表,列举,倒推,替换和假设等解决问题策略的基础上进行教学的。转化是一种常见的、极其重要的解决问题的策略,是指把一个数学问题变更为另一类已经解决的,或者比较容易解决的问题,从而使原问题得以解决的一种策略,转化的关键是要能根据具体的问题,确定转化后要实现的目标和具体的转化方法。其实转化的策略对学生来说并不陌生,在以前的学习中已经多次使用过,学生具备一定的基础。掌握转化策略不仅有利于问题的解决,更有益于思维的发展。本课教学设计中教者立足学生已有的知识水平,紧紧抓住新旧知识的结合点,引导学生主动参与学习,自主探究、合作交流,重视培养学生获取新知的能力和获取知识的思维过程。本节教学设计以图形面积问题中的转化为线索,同时涉及体积问题,有序引导学生回顾并结合课件激发学生再现当时解决问题的过程,凸现了内容的情趣化和生活化;给足学生自主探索的空间,在探索的过程中,通过引导学生开展观察、猜想、操作、推理、交流等数学活动以培养学生的实践能力、创造能力、合作精神。用转化法解决问题的策略(2)一、直观演示,在强烈对比中引出转化策略1.考考你的眼力。出示图(1),教师问:考考你的眼力,这两个图形的面积相等吗?通过直观观察,学生很容易可以比较出左边图形比右边图形多了一个半圆的面积。出示图(2),提问:同学们再仔细观察一下,这两个图形的面积相等吗?(如果有困难,教师可以启发思考:这两个图形的面积可以利用公式进行计算吗?我们用数方格的方法能求出它们的面积吗?最终引导出两种转化成长方形的思路。)交流反馈,课件动态演示转化的过程,并板书相应的转化方法:平移、旋转。明确:这两个图形都可以转化成为长5格、宽4格的长方形,所以它们的面积是相等的。2.初步感受转化作用。教师:刚才我们都是把这两个图形转化成长方形进行比较的,想一想,为什么要这样转化呢?这样转化有什么好处?交流中明确:由于这是两个不规则图形,所以不能直接用公式求出面积,用数方格的方法又太麻烦了,把它们转化成长方形后,非常容易比较出它们的大小。(板书:复杂+简单)揭示课题:刚才同学们在解决这个问题时,其实用到了数学上一种重要的策略——转化。(板书课题:解决问题的策略——转化)[心理学思考]有效的数学学习是建立在学生合适的数学现实的基础之上的。六年级学生在以往数学学习过程中都积累了不少“转化”的体验,但这种体验基本上处于无意识的状态。只有合理呈现学习素材,才能促使学生对转化策略形成清晰的认知。为此,在课的一开始,便呈现了一个直观性和操作性极强的素材图(1),“考考你的眼力,这两幅图的面积相等吗?”学生很容易直观分出大小。然后再出示图(2),提问:“它们的面积相等吗?”学生有了刚才的学习体验,就会积极开动脑筋,通过平移和旋转把这两个图形转化为一个长方形。这样以典型而具有直观性的图形转化为切入口,既使学习内容鲜明生动,很快调动起学生积极的学习心向,又能唤醒学生原有认知中的“转化”体验,让学生不知不觉地开始进一步感悟“转化”策略。二、回顾整理,在复习旧知中感受转化策略1.图形面积、体积方面的应用。(1)回顾有关公式推导过程。启发思考:其实在我们小学阶段的数学学习中,比如说一些图形面积公式、体积公式的推导,就常常用到转化的策略,你们能想起来吗?(学生先独立思考,然后在小组里讨论。教师巡视,指导交流。)反馈交流。(根据学生的回答,课件相机呈现平行四边形、三角形、梯形、圆面积计算公式和圆柱、圆锥体积计算公式的推导过程。)(2)再次感受转化策略的作用。回顾:我们在推导平行四边形、三角形和梯形面积计算公式时,是先知道哪个图形的面积计算公式的?接下来我们是如何研究图形之间面积关系的?我们又是把哪些图形转化成平行四边形的(三角形、梯形)?长方体、圆柱和圆锥的体积计算公式呢?感受:在刚才应用转化策略推导出这些公式时,你们发现它们都有什么共同的特点?明确:转化前这些问题都是我们面临的新问题,而我们都是把它转化成曾经学习过的旧知识。(板书:新问题+旧知识)应用:2.图形周长、内角和方面的应用。讲述:在求周长、内角和等问题时,我们也要用到转化的策略。想一想:你有什么办法求出树叶和硬币的周长?怎样求出三角形的内角和?明确:化曲为直,把曲线转化成线段来进行测量周长。把三角形的三个内角和转化为一个平角。练习:计算下面左边两个图形的周长,求出右边图形的内角和。师生交流:刚才我们回顾了一些关于图形中运用转化策略的问题,那对于转化这一策略,现在你有什么样的体会?(板书:复杂+简单)3.数与计算方面的应用。教师:从某种意义上来说,学习数学就是不断学会转化的过程。不仅在图形的世界里常常应用转化的策略解决问题,而且在数与计算方面也常用到这一策略。想一想:在学习认数和计算时,哪些地方用到过转化的策略呢?先让学生在小组整理回顾,然后师生互动交流。(举例说明:如小数乘法是转化为整数乘法,分数除法是转化为分数乘法来进行计算的,等等。)练习:计算1/2+1/4+1/3+1/16。先让学生试算,然后出示图片。提问:你能运用转化的策略来解决这一问题吗?引导学生交流算法,明确把加法计算转化为减法计算的过程。(板书:数+形)[心理学思考]结构性材料的组织和呈现,是课堂教学不同于自然认知的重要标志。对转化策略的理解不能仅仅依赖直观的演示与形象的操作,更重要的是能让学生亲身经历策略的形成过程,尤其是思维不断发展的过程。因此,教学时应该加强对知识的学习进行系统分类,以逐步建构学生对转化策略的深层理解。以上教学设计中主要从3个层面让学生经历转化策略的形成过程:(1)图形面积、体积方面的应用;(2)图形周长、内角和方面的应用;(3)数与计算方面的应用。在转化策略的形成过程中,遵循学生的心理规律,逐步深入展开:首先,让学生经历直观的单一图形的转化(即考考你的眼力);接着,让学生经历了形与形之间的转化(即在面积和体积计算公式推导、求周长和内角和中的应用);然后,又让学生经历了数与计算方面的转化(即数与形的转化)。不同层面的转化策略,思维含
本文标题:用转化法解决问题的策略教案
链接地址:https://www.777doc.com/doc-829887 .html