您好,欢迎访问三七文档
第3节牛顿运动定律的综合应用第三章牛顿运动定律一、失重与超重1.实重和视重(1)实重:物体实际所受的______,它与物体的运动状态无关.(2)视重:测力计所指示的数值.重力2.超重、失重和完全失重比较超重现象失重现象完全失重概念物体对支持物的压力(或对悬挂物的拉力)______物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)______物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)_______的现象产生条件物体的加速度方向______物体的加速度方向______物体的加速度方向______,大小a=g大于小于等于零向上向下向下超重现象失重现象完全失重列原理式F-mg=maF=m(g+a)mg-F=maF=m(g-a)mg-F=mgF=0运动状态加速上升、____________加速下降、____________无阻力的抛体运动情况;绕地球匀速圆周运动的卫星减速下降减速上升二、整体法与隔离法1.整体法:当连接体内(即系统内)各物体的____________相同时,可以把系统内的所有物体看成___________,分析其受力和运动情况,运用牛顿第二定律对______列方程求解的方法.2.隔离法:当求系统内物体间__________________时,常把某个物体从系统中______出来,分析其受力和运动情况,再用牛顿第二定律对______出来的物体列方程求解的方法.加速度一个整体整体相互作用的内力隔离隔离3.外力和内力:如果以物体系统为研究对象,受到系统之外的物体的作用力,这些力是该系统受到的______,而系统内各物体间的相互作用力为______.应用牛顿第二定律列方程时不考虑内力.如果把某物体隔离出来作为研究对象,则内力将转换为隔离体的外力.外力内力超重与失重【题组过关】1.(2018·4月浙江选考)如图所示,小芳在体重计上完成下蹲动作.下列F-t图象能反映体重计示数随时间变化的是()解析:选C.下蹲时先加速下降,后减速下降,故先失重,后超重,F先小于重力,后大于重力,C正确.2.在升降电梯内的地板上放一体重计,电梯静止时,晓敏同学站在体重计上,体重计示数为50kg,电梯运动过程中,某一段时间内晓敏同学发现体重计示数如图所示,在这段时间内下列说法中正确的是()A.晓敏同学所受的重力变小了B.晓敏对体重计的压力小于体重计对晓敏的支持力C.电梯一定在竖直向下运动D.电梯的加速度大小为g5,方向一定竖直向下解析:选D.由题知体重计的示数为40kg时,人对体重计的压力小于人的重力,故处于失重状态,实际人受到的重力并没有变化,A错误;由牛顿第三定律知,B错误;电梯具有向下的加速度,但不一定是向下运动,C错误;由牛顿第二定律mg-FN=ma可知a=g5,方向竖直向下,D正确.3.(2019·浙江十校联考)撑竿跳是田径运动项目一种.在这项比赛中,运动员双手握住一根特制的竿子,经过快速助跑后,借助竿子撑地的反弹力量,使身体腾起,跃过横杆.关于撑竿跳,下列说法正确的是()A.运动员起跳时,撑竿提供给运动员的弹力等于运动员所受重力B.运动员起跳时,撑竿提供给运动员的弹力小于运动员所受重力C.在运动员起跳上升阶段,运动员始终处于超重状态D.在运动员越过横杆下落阶段,运动员始终处于失重状态解析:选D.起跳时,弹力大于运动员重力,上升阶段有向上加速和向上减速两个阶段,所以先超重后失重;越过横杆后只受重力,失重,所以D正确.4.(2019·杭州四校联考)下列情境中属于超重现象的是()解析:选D.汽车过拱桥最高点时,加速度竖直向下,汽车处于失重状态,选项A错误;载人航天器在太空中的运动,重力完全提供向心力,载人航天器处于完全失重状态,选项B错误;人站在体重计上突然下蹲的瞬间,加速度向下,人处于失重状态,选项C错误;电梯中的人随电梯向上加速运动,加速度向上,人处于超重状态.选项D正确.1.对超重、失重的理解:超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).2.判断方法(1)不管物体的加速度是不是竖直方向,只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.(2)尽管不是整体有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重现象.在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等.动力学观点在连接体中的应用【知识提炼】1.多个相互关联的物体由细绳、细杆或弹簧等连接或叠放在一起,构成的物体系统称为连接体.常见的连接体如图所示:2.连接体问题的分析方法:一是隔离法,二是整体法.(1)加速度相同的连接体①若求解整体的加速度,可用整体法.整个系统看成一个研究对象,分析整体受外力情况,再由牛顿第二定律求出加速度.②若求解系统内力,可先用整体法求出整体的加速度,再用隔离法将内力转化成外力,由牛顿第二定律求解.(2)加速度不同的连接体:若系统内各个物体的加速度不同,一般应采用隔离法.以各个物体分别作为研究对象,对每个研究对象进行受力和运动情况分析,分别应用牛顿第二定律建立方程,并注意应用各个物体的相互作用关系联立求解.3.充分挖掘题目中的临界条件(1)相接触与脱离的临界条件:接触处的弹力FN=0.(2)相对滑动的临界条件:接触处的静摩擦力达到最大静摩擦力.(3)绳子断裂的临界条件:绳子中的张力达到绳子所能承受的最大张力.(4)绳子松弛的临界条件:张力为0.4.其他几个注意点(1)正确理解轻绳、轻杆和轻弹簧的质量为0和受力能否突变的特征的不同.(2)力是不能通过受力物体传递的受力,分析时要注意分清内力和外力,不要漏力或添力.【典题例析】质量为M、长为3L的杆水平放置,杆两端A、B系着长为3L的不可伸长且光滑的柔软轻绳,绳上套着一质量为m的小铁环.已知重力加速度为g,不计空气影响.(1)现让杆和环均静止悬挂在空中,如图甲,求绳中拉力的大小.(2)若杆与环保持相对静止,在空中沿AB方向水平向右做匀加速直线运动,此时环恰好悬于A端正下方,如图乙所示.①求此状态下杆的加速度大小a.②为保持这种状态需在杆上施加一个多大外力,方向如何?[审题指导](1)题图甲中杆和环均静止,把环隔离出来受力分析,由平衡条件列方程可求出绳中拉力.(2)题图乙中,杆与环一起加速,把环隔离出来受力分析,由牛顿第二定律列方程可求出环的加速度,再对杆和环整体进行受力分析,由牛顿第二定律列方程求出施加的外力.[解析](1)环受力如图(a)所示,由平衡条件得:2FTcosθ-mg=0由图(a)中几何关系可知:cosθ=63联立以上两式解得:FT=64mg.(2)①小铁环受力如图(b)所示,由牛顿第二定律得:F′Tsinθ′=maF′T+F′Tcosθ′-mg=0由图(b)中几何关系可知θ′=60°,代入以上两式解得:a=33g.②杆和环整体受力如图(c)所示,由牛顿第二定律得:Fcosα=(M+m)aFsinα-(M+m)g=0解得:F=233(M+m)g,α=60°.[答案](1)64mg(2)①33g②外力大小为233(M+m)g方向与水平方向成60°角斜向右上方1.隔离法的选取原则:若连接体或关联体内各物体的加速度不相同,或者需要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.2.整体法的选取原则:若连接体内各物体具有相同的加速度,且不需要求系统内物体之间的作用力时,可以把它们看成一个整体来分析整体受到的外力,应用牛顿第二定律求出加速度(或其他未知量).3.整体法、隔离法交替运用原则:若连接体内各物体具有相同的加速度,且要求系统内物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度、后隔离求内力”.【题组过关】考向1加速度相同的连接体问题1.(2019·舟山质检)如图所示,质量为M的小车放在光滑的水平面上,小车上用细线悬吊一质量为m的小球,M>m,用一力F水平向右拉小球,使小球和车一起以加速度a向右运动时,细线与竖直方向成θ角,细线的拉力为F1.若用一力F′水平向左拉小车,使小球和其一起以加速度a′向左运动时,细线与竖直方向也成θ角,细线的拉力为F′1.则()A.a′=a,F′1=F1B.a′>a,F′1=F1C.a′<a,F′1=F1D.a′>a,F′1>F1解析:选B.当用力F水平向右拉小球时,以小球为研究对象,竖直方向有F1cosθ=mg①水平方向有F-F1sinθ=ma,以整体为研究对象有F=(m+M)a,解得a=mMgtanθ②当用力F′水平向左拉小车时,以球为研究对象,竖直方向有F′1cosθ=mg③水平方向有F′1sinθ=ma′,解得a′=gtanθ④结合两种情况,由①③有F1=F′1;由②④并结合M>m有a′>a.故正确选项为B.考向2加速度不同的连接体问题2.如图所示,一块足够长的轻质长木板放在光滑水平地面上,质量分别为mA=1kg和mB=2kg的物块A、B放在长木板上,A、B与长木板间的动摩擦因数均为μ=0.4,最大静摩擦力等于滑动摩擦力.现用水平拉力F拉A,取重力加速度g=10m/s2.改变F的大小,B的加速度大小可能为()A.1m/s2B.2.5m/s2C.3m/s2D.4m/s2解析:选A.A、B放在轻质长木板上,长木板质量为0,所受合力始终为0,即A、B所受摩擦力大小相等.由于A、B受到长木板的最大静摩擦力的大小关系为fAmaxfBmax,所以B始终相对长木板静止,当拉力增加到一定程度时,A相对长木板滑动,B受到的最大合力等于A的最大静摩擦力,即fB=fAmax=μmAg,由fB=mBaBmax,可知B的加速度最大为2m/s2,选项A正确.动力学中的临界、极值问题【知识提炼】1.临界或极值条件的标志(1)有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;(2)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点.2.解答临界问题的三种方法极限法把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的假设法临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题数学法将物理过程转化为数学表达式,根据数学表达式解出临界条件【题组过关】1.(多选)(2019·台州调研)如图所示,A、B两物块的质量分别为2m和m,静止叠放在水平地面上.A、B间的动摩擦因数为μ,B与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g.现对A施加一水平拉力F,则()A.当F2μmg时,A、B都相对地面静止B.当F=52μmg时,A的加速度为13μgC.当F3μmg时,A相对B滑动D.无论F为何值,B的加速度不会超过12μg解析:选BCD.A、B间的最大静摩擦力为2μmg,B和地面之间的最大静摩擦力为32μmg,对A、B整体,只要F>32μmg,整体就会运动,选项A错误;当A对B的摩擦力为最大静摩擦力时,A、B将要发生相对滑动,故A、B一起运动的加速度的最大值满足2μmg-32μmg=mamax,B运动的最大加速度amax=12μg,选项D正确;对A、B整体,有F-32μmg=3mamax,则F>3μmg时两者会发生相对运动,选项C正确;当F=52μmg时,两者相对静止,一起滑动,加速度满足F-32μmg=3ma,解得a=13μg,选项B正确.2.(2019·嘉兴检测)如图所示,木块A的质量为m,木块B的质量为M,叠放在光滑的水平面上,A、B之间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g.现用水平力F作用于A,则保持A、B相对静止的条件是F不超过()A.μmgB.μMgC.μmg
本文标题:(浙江选考)2020版高考物理总复习 第三章 3 第3节 牛顿运动定律的综合应用课件
链接地址:https://www.777doc.com/doc-8323605 .html