您好,欢迎访问三七文档
数学第二部分高考热点分层突破专题四概率与统计第2讲概率01做高考真题明命题趋向02研考点考向破重点难点03练典型习题提数学素养[做真题]1.(2018·高考全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3B.0.4C.0.6D.0.7解析:选B.设“只用现金支付”为事件A,“既用现金支付也用非现金支付”为事件B,“不用现金支付”为事件C,则P(C)=1-P(A)-P(B)=1-0.45-0.15=0.4.故选B.2.(2019·高考全国卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.23B.35C.25D.15解析:选B.设3只测量过某项指标的兔子为A,B,C,另2只兔子为a,b,从这5只兔子中随机取出3只,则基本事件共有10种,分别为(A,B,C),(A,B,a),(A,B,b),(A,C,a),(A,C,b),(A,a,b),(B,C,a),(B,C,b),(B,a,b),(C,a,b),其中“恰有2只测量过该指标”的取法有6种,分别为(A,B,a),(A,B,b),(A,C,a),(A,C,b),(B,C,a),(B,C,b),因此所求的概率为610=35,选B.3.(2017·高考全国卷Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π4解析:选B.设正方形的边长为2,则正方形的面积为4,正方形内切圆的面积为π,根据对称性可知,黑色部分的面积是正方形内切圆的面积的一半,所以黑色部分的面积为π2.根据几何概型的概率公式,得所求概率P=π24=π8.故选B.4.(2017·高考全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.解:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6×450-4×450=900;若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8,因此Y大于零的概率的估计值为0.8.[明考情]1.以选择题、填空题的形式考查古典概型、几何概型的基本应用,同时渗透互斥事件、对立事件.2.概率常与统计知识结合在一起命题,主要以解答题形式呈现,中档难度.[知识整合]几何概型的概率公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).几何概型(基础型)求解几何概型的概率应把握的两点(1)当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解.(2)寻找构成试验的全部结果的区域和事件发生的区域,有时需要设出变量,在坐标系中表示所需要的区域.[考法全练]1.(2019·福建五校第二次联考)在区间[0,2]上随机取一个数x,使sinπ2x≥32的概率为()A.13B.12C.23D.34解析:选A.当x∈[0,2]时,0≤π2x≤π,所以sinπ2x≥32⇔π3≤π2x≤2π3⇔23≤x≤43.故由几何概型的知识可知所求概率P=43-232=13.故选A.2.(2019·广东六校第一次联考)在区间[-π,π]上随机取两个实数a,b,记向量m=(a,4b),n=(4a,b),则m·n≥4π2的概率为()A.1-π8B.1-π4C.1-π5D.1-π6解析:选B.在区间[-π,π]上随机取两个实数a,b,则点(a,b)在如图所示的正方形内部及其边界上.因为m·n=4a2+4b2≥4π2,所以a2+b2≥π2,满足条件的点(a,b)在以原点为圆心,π为半径的圆外部(含边界),且在正方形内(含边界),如图中阴影部分所示,所以m·n≥4π2的概率P=4π2-π34π2=1-π4,故选B.3.(2019·福建省质量检查)某商场通过转动如图所示的质地均匀的6等分的圆盘进行抽奖活动,当指针指向阴影区域时为中奖.规定每位顾客有3次抽奖机会,但中奖1次就停止抽奖.假设每次抽奖相互独立,则顾客中奖的概率是()A.427B.13C.59D.1927解析:选D.记顾客中奖为事件A,恰抽1次就中奖为事件A1,恰抽2次中奖为事件A2,恰抽3次中奖为事件A3,每次抽奖相互独立,每次抽奖中奖的概率均为13,所以P(A)=P(A1)+P(A2)+P(A3)=13+23×13+23×23×13=1927,故选D.[知识整合]古典概型的概率P(A)=mn=A中所含的基本事件数基本事件总数.古典概型(综合型)古典概型的两个特点(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.[典型例题](2019·安徽五校联盟第二次质检)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量(单位:辆)如表:A类轿车B类轿车C类轿车舒适型100150z标准型300450600按类用分层抽样的方法从这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值;(2)用分层抽样的方法从C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数xi(1≤i≤8,i∈N),设样本平均数为x,求|xi-x|≤0.5的概率.【解】(1)设该厂这个月共生产轿车n辆,由题意得50n=10100+300,所以n=2000,则z=2000-(100+300)-(150+450)-600=400.(2)设所抽样本中有a辆舒适型轿车,由题意得4001000=a5,得a=2,所以抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A1,A2分别表示2辆舒适型轿车,用B1,B2,B3分别表示3辆标准型轿车,用E表示事件“在该样本中任取2辆,至少有1辆舒适型轿车”.从该样本中任取2辆包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个,其中事件E包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个.故P(E)=710,即所求的概率为710.(3)样本平均数x=18×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D表示事件“从样本中任取一个数xi(1≤i≤8,i∈N),|xi-x|≤0.5”,则从样本中任取一个数有8个基本事件,事件D包括的基本事件有9.4,8.6,9.2,8.7,9.3,9.0,共6个.所以P(D)=68=34,即所求的概率为34.求古典概型概率的一般步骤(1)求出所有基本事件的个数n,常用的方法有列举法、列表法、画树状图法.(2)求出事件A所包含的基本事件的个数m.(3)代入公式P(A)=mn求解.[对点训练]1.(2019·沈阳市质量监测(一))某英语初学者在拼写单词“steak”时,对后三个字母的记忆有些模糊,他只记得由“a”“e”“k”三个字母组成并且“k”只可能在最后两个位置,如果他根据已有信息填入上述三个字母,那么他拼写正确的概率为()A.16B.14C.12D.13解析:选B.由题知可能的结果有:eak,aek,eka,ake,共4种,其中正确的只有一种eak,所以拼写正确的概率是14,故选B.2.(2019·成都第一次诊断性检测)齐王有上等、中等、下等马各一匹;田忌也有上等、中等、下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为()A.49B.59C.23D.79解析:选C.将齐王的上等、中等、下等马分别记为a1,a2,a3,田忌的上等、中等、下等马分别记为b1,b2,b3,则从双方的马匹中随机各选一匹进行比赛,其对阵情况有a1b1,a1b2,a1b3,a2b1,a2b2,a2b3,a3b1,a3b2,a3b3,共9种,其中齐王的马获胜的对阵情况有a1b1,a1b2,a1b3,a2b2,a2b3,a3b3,共6种,所以齐王的马获胜的概率P=69=23,故选C.3.某校拟从高二年级2名文科生和4名理科生中选出4名同学代表学校参加知识竞赛,其中每个人被选中的可能性均相等.(1)求被选中的4名同学中恰有2名文科生的概率;(2)求被选中的4名同学中至少有1名文科生的概率.解:将2名文科生和4名理科生依次编号为1,2,3,4,5,6,从2名文科生和4名理科生中选出4名同学记为(a,b,c,d),其结果有(1,2,3,4),(1,2,3,5),(1,2,3,6),(1,2,4,5),(1,2,4,6),(1,2,5,6),(1,3,4,5),(1,3,4,6),(1,3,5,6),(1,4,5,6),(2,3,4,5),(2,3,4,6),(2,3,5,6),(2,4,5,6),(3,4,5,6),共15种.(1)被选中的4名同学中恰有2名文科生的结果有(1,2,3,4),(1,2,3,5),(1,2,3,6),(1,2,4,5),(1,2,4,6),(1,2,5,6),共6种.记“被选中的4名同学中恰有2名文科生”为事件A,则P(A)=615=25.(2)记“被选中的4名同学中至少有1名文科生”为事件B,则事件B包含有1名文科生或者2名文科生这两种情况.其对立事件为“被选中的4名同学中没有文科生”,只有一种结果(3,4,5,6).所以P(B)=115,所以P(B)=1-P(B)=1-115=1415.本部分内容讲解结束按ESC键退出全屏播放
本文标题:(新课标)2020版高考数学二轮复习 专题四 概率与统计 第2讲 概率课件 文 新人教A版
链接地址:https://www.777doc.com/doc-8328815 .html