您好,欢迎访问三七文档
数学第二部分高考热点分层突破专题三立体几何第2讲空间点、线、面的位置关系01做高考真题明命题趋向02研考点考向破重点难点03练典型习题提数学素养[做真题]1.(2019·高考全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面解析:选B.对于A,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A不正确;对于B,根据两平面平行的判定定理与性质知,B正确;对于C,平行于同一条直线的两个平面可能相交,也可能平行,所以C不正确;对于D,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D不正确.综上可知选B.2.(2019·高考全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线解析:选B.取CD的中点O,连接ON,EO,因为△ECD为正三角形,所以EO⊥CD,又平面ECD⊥平面ABCD,平面ECD∩平面ABCD=CD,所以EO⊥平面ABCD.设正方形ABCD的边长为2,则EO=3,ON=1,所以EN2=EO2+ON2=4,得EN=2.过M作CD的垂线,垂足为P,连接BP,则MP=32,CP=32,所以BM2=MP2+BP2=(32)2+(32)2+22=7,得BM=7,所以BM≠EN.连接BD,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线,选B.3.(2018·高考全国卷Ⅱ)在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为()A.15B.56C.55D.22解析:选C.如图,连接BD1,交DB1于O,取AB的中点M,连接DM,OM,易知O为BD1的中点,所以AD1∥OM,则∠MOD为异面直线AD1与DB1所成角.因为在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=3,AD1=AD2+DD21=2,DM=AD2+12AB2=52,DB1=AB2+AD2+DD21=5,所以OM=12AD1=1,OD=12DB1=52,于是在△DMO中,由余弦定理,得cos∠MOD=12+522-5222×1×52=55,即异面直线AD1与DB1所成角的余弦值为55,故选C.[明考情]1.高考对此部分的命题较为稳定,一般为“一小一大”或“一大”,即一道选择或填空题和一道解答题或仅一道解答题.2.选择题一般在第10~11题的位置,填空题一般在第14题的位置,多考查线面位置关系的判断,难度较小.3.解答题多出现在第18或19题的第一问的位置,考查空间中平行或垂直关系的证明,难度中等.[考法全练]1.(2019·江西七校第一次联考)设m,n是空间中两条不同的直线,α,β是两个不同的平面,则下列说法正确的是()A.若m∥n,n⊂α,则m∥αB.若m⊂α,n⊂β,α∥β,则m∥nC.若α∥β,m⊥α,则m⊥βD.若m⊂α,n⊂β,m∥β,n∥α,则α∥β空间线面位置关系的判定解析:选C.若m∥n,n⊂α,则m∥α或m⊂α,所以选项A不正确;若m⊂α,n⊂β,α∥β,则m∥n或m与n异面,所以选项B不正确;由面面平行的性质、线面垂直的性质及判定知选项C是正确的;若m⊂α,n⊂β,m∥β,n∥α,则α∥β或α与β相交,所以选项D不正确.故选C.2.(2019·武汉市调研测试)已知两个平面相互垂直,下列命题中,①一个平面内已知直线必垂直于另一个平面内的任意一条直线;②一个平面内已知直线必垂直于另一个平面内的无数条直线;③一个平面内任意一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题个数是()A.3B.2C.1D.0解析:选C.构造正方体ABCDA1B1C1D1,如图,①,在正方体ABCDA1B1C1D1中,平面ADD1A1⊥平面ABCD,A1D⊂平面ADD1A1,BD⊂平面ABCD,但A1D与BD不垂直,故①错;②,在正方体ABCDA1B1C1D1中,平面ADD1A1⊥平面ABCD,l是平面ADD1A1内的任意一条直线,l与平面ABCD内同AB平行的所有直线垂直,故②正确;③,在正方体ABCDA1B1C1D1中,平面ADD1A1⊥平面ABCD,A1D⊂平面ADD1A1,但A1D与平面ABCD不垂直,故③错;④,在正方体ABCDA1B1C1D1中,平面ADD1A1⊥平面ABCD,且平面ADD1A1∩平面ABCD=AD,过交线AD上的点作交线的垂线l,则l可能与另一平面垂直,也可能与另一平面不垂直,故④错.故选C.3.(2019·福建省质量检查)如图,AB是圆锥SO的底面圆O的直径,D是圆O上异于A,B的任意一点,以AO为直径的圆与AD的另一个交点为C,P为SD的中点.现给出以下结论:①△SAC为直角三角形;②平面SAD⊥平面SBD;③平面PAB必与圆锥SO的某条母线平行.其中正确结论的个数是()A.0B.1C.2D.3解析:选C.如图,连接OC,因为AO为圆的直径,所以AC⊥OC,因为SO垂直于底面圆O,AC⊂底面圆O,所以AC⊥SO,因为SO∩OC=O,所以AC⊥平面SOC.又SC⊂平面SOC,所以AC⊥SC,所以△SAC为直角三角形,故①正确.由于点D是圆O上的动点,所以平面SAD不能总垂直于平面SBD,故②错误,连接DO并延长交圆O于E,连接SE,PO,因为P为SD的中点,O为DE的中点,所以OP∥SE.又OP⊂平面PAB,SE⊄平面PAB,所以SE∥平面PAB,故③正确,故选C.4.(2019·福建五校第二次联考)已知正方体ABCDA1B1C1D1的体积为1,点M在线段BC上(点M异于B,C两点),点N为线段CC1的中点.若平面AMN截正方体ABCDA1B1C1D1所得的截面为四边形,则线段BM的取值范围为()A.0,13B.0,12C.23,1D.12,1解析:选B.易知正方体ABCDA1B1C1D1的棱长为1.若M为BC的中点,则MN∥AD1,所以此时截面为四边形AMND1,所以BM=12符合题意.若0BM12,如图1,作BP∥MN交CC1于点P,再作PQ∥C1D1交DD1于点Q,连接AQ,易知MN∥AQ,所以此时截面为四边形AMNQ,所以0BM12符合题意.若12BM1,如图2,作BP∥MN交B1C1于点P,再作PQ∥C1D1交A1D1于点Q,连接AQ,易知MN∥AQ,所以点Q在平面AMN内,设平面AMN与直线C1D1交于点E,连接QE,NE,则此时截面为五边形AQENM,显然不符合题意,综上可知,BM∈0,12.故选B.5.(2019·河北省九校第二次联考)已知两条不同的直线m,n,两个不重合的平面α,β,给出下面五个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④m⊥α,m∥β⇒α⊥β;⑤α∥β,m∥n,m⊥α⇒n⊥β.其中正确命题的序号是________.解析:命题①,显然正确;命题②,m,n可能异面,故②为假命题;命题③,可能n⊂α,故③为假命题;命题④,由线面垂直、线面平行的性质以及面面垂直的判定知④为真命题;命题⑤,由m∥n,m⊥α,得n⊥α,又α∥β,所以n⊥β,故⑤为真命题.综上,正确的命题为①④⑤.答案:①④⑤判断与空间位置关系有关的命题真假的3种方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.(2)借助于反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断.(3)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.[典型例题]由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.空间中平行、垂直关系的证明【证明】(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCDA1B1C1D1为四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD.又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD.因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM.又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.平行关系及垂直关系的转化空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.[对点训练]1.如图,在四棱锥PABCD中,平面PAB⊥平面ABCD,AD∥BC,PA⊥AB,CD⊥AD,BC=CD=12AD,E为AD的中点.(1)求证:PA⊥CD.(2)求证:平面PBD⊥平面PAB.证明:(1)因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,又因为PA⊥AB,所以PA⊥平面ABCD,所以PA⊥CD.(2)由已知,BC∥ED,且BC=ED,所以四边形BCDE是平行四边形,又CD⊥AD,BC=CD,所以四边形BCDE是正方形,连接CE(图略),所以BD⊥CE,又因为BC∥AE,BC=AE,所以四边形ABCE是平行四边形,所以CE∥AB,则BD⊥AB.由(1)知PA⊥平面ABCD,所以PA⊥BD,又因为PA∩AB=A,则BD⊥平面PAB,且BD⊂平面PBD,所以平面PBD⊥平面PAB.2.如图,已知斜三棱柱ABCA1B1C1中,点D,D1分别为AC,A1C1上的点.(1)当A1D1D1C1等于何值时,BC1∥平面AB1D1?(2)若平面BC1D∥平面AB1D1,求ADDC的值.解:(1)如图,取D1为线段A1C1的中点,此时A1D1D1C1=1,连接A1B交AB1于点O,连接OD1.由棱柱的性质,知四边形A1ABB1为平行四边形,所以点O为A1B的中点.在△A1BC1中,点O,D1分别为A1B,A1C1的中点,所以OD1∥BC1.又因为OD1⊂平面AB1D1,BC1⊄平面AB1D1,所以BC1∥平面AB1D1.所以当A1D1D1C1=1时,BC1∥平面AB1D1.(2)由已知,平面BC1D∥平面AB1D1,且平面A1BC1∩平面BDC1=BC1,平面A1BC1∩平面AB1D1=D1O.因此BC1∥D1O,同理AD1∥DC1.因为A1D1D1C1=A1OOB,A1D1D1C1=DCAD.又因为A1OOB=1,所以DCAD=1,即ADDC=1.[典型例题]如图①,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AB=BC.把△BAC沿AC折起到△PAC的位置,使得P点在平面ADC上的正投影O恰好落在线段AC上,如图②所示,点E,F分别为棱PC,CD的中点.(1)求证:平面OEF∥平面PAD;(2)求证:CD⊥平面POF;(3)若AD=3,CD=4,AB=5,求三棱锥ECFO的体积.平面图形的折叠问题【解】(1)证明:因为点P在平面ADC上的正投影O恰好落在线段AC上,所以PO⊥平面ADC,所以PO⊥AC.由题意知O是AC的中点,又点E是PC的中点,所以OE∥PA,又OE⊄平面P
本文标题:(新课标)2020版高考数学二轮复习 专题三 立体几何 第2讲 空间点、线、面的位置关系课件 理 新
链接地址:https://www.777doc.com/doc-8328834 .html