您好,欢迎访问三七文档
数学第二部分高考热点分层突破专题四概率与统计第1讲概率、离散型随机变量及其分布列02研考点考向破重点难点01做高考真题明命题趋向[做真题]题型古典概型与事件的相互独立性1.(2019·高考全国卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.1116解析:选A.由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为C36=6×5×46=20.根据古典概型的概率计算公式得,所求概率P=2064=516.故选A.2.(2018·高考全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118解析:选C.不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有C210种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率P=3C210=115,故选C.3.(2019·高考全国卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.解析:记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.答案:0.184.(2019·高考全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.解:(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.[山东省学习指导意见]1.概率(1)在具体情境中,进一步了解概率的意义以及频率与概率的区别.(2)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.了解两个互斥事件的概率加法公式.(3)了解随机数的意义,初步体会几何概型的意义.2.离散型随机变量及其分布列(1)在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性.(2)了解条件概率和两个事件相互独立的概念.理解n次独立重复试验的模型及二项分布,理解超几何分布及其导出过程,并能解决一些简单的实际问题.(3)理解取有限值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.(4)认识正态分布曲线的特点及曲线所表示的意义.[考法全练]1.(2019·贵州省适应性考试)在2018中国国际大数据产业博览会期间,有甲、乙、丙、丁4名游客准备到贵州的黄果树瀑布、梵净山、万峰林三个景点旅游,其中每个人只能去一个景点,每个景点至少要去一个人,则游客甲去梵净山旅游的概率为()A.14B.13C.12D.23古典概型与相互独立事件的概率解析:选B.4名游客去三个景点,每个景点至少有一个人,可以先将其中2名游客“捆绑在一起”作为“一个人”,再将“三个人”安排到三个景点去旅游,共有C24A33=6×6=36(种)方案.游客甲去梵净山旅游,若梵净山再没有其他3名游客去旅游,则有C23A22=3×2=6(种)方案,若“乙、丙、丁”中有1人也去了梵净山旅游,则有C13A22=6(种)方案,所以游客甲去梵净山旅游共有12种方案.所以游客甲去梵净山旅游的概率P=1236=13.故选B.2.(一题多解)(2019·济南市模拟考试)2019年1月1日,济南轨道交通1号线试运行,济南轨道交通集团面向广大市民开展“参观体验,征求意见”活动.市民可以通过济南地铁APP抢票,小陈抢到了三张体验票,准备从四位朋友小王、小张、小刘、小李中随机选择两位与自己一起去参加体验活动,则小王和小李至多一人被选中的概率为()A.16B.13C.23D.56解析:选D.法一:若小王和小李都没被选中,则有C22种方法,若小王和小李有一人被选中,则有C12C12种方法,故所求概率P=C22+C12C12C24=56.法二:若小王和小李都被选中,则有1种方法,故所求概率P=1-1C24=56.3.(2019·石家庄市模拟(一))袋子中装有大小、形状完全相同的2个白球和2个红球,现从中不放回地摸取2个球,已知第二次摸到的是红球,则第一次摸到红球的概率为()A.16B.13C.12D.15解析:选B.设“第二次摸到红球”为事件A,“第一次摸到红球”为事件B,因为P(A)=2×1+2×24×3=12,P(AB)=24×3=16,所以P(B|A)=P(AB)P(A)=13,所以在第二次摸到红球的条件下,第一次摸到红球的概率为13,故选B.4.(2019·武汉市调研测试)为了提升全民身体素质,学校十分重视学生的体育锻炼.某校篮球运动员进行投篮练习,他前一球投进则后一球投进的概率为34,他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第2球投进的概率为()A.34B.58C.716D.916解析:选B.设该篮球运动员投进第n-1(n≥2,n∈N*)个球的概率为Pn-1,第n-1个球投不进的概率为1-Pn-1,则他投进第n个球的概率为Pn=34Pn-1+14(1-Pn-1)=14+12Pn-1,所以Pn-12=12Pn-1-12.所以Pn-12=P1-12·12n-1=12n-1×14=12n+1.所以Pn=12n+1+12(n∈N*),所以P2=58.故选B.5.(2019·济南模拟)某人有4把钥匙,其中2把能打开门.现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是________.如果试过的钥匙不扔掉,这个概率是________.解析:第二次打开门,说明第一次没有打开门,故第二次打开门的概率为24×23=13.如果试过的钥匙不扔掉,这个概率为24×24=14.答案:13146.某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为110和p.(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p的值;(2)求系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.解:(1)设“至少有一个系统不发生故障”为事件C,那么1-P(C-)=1-110·p=4950,解得p=15.(2)设“系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D,“系统A在3次相互独立的检测中发生k次故障”为事件Dk.则D=D0+D1,且D0,D1互斥.依题意,得P(D0)=C031-1103,P(D1)=C131101-1102,所以P(D)=P(D0)+P(D1)=7291000+2431000=243250.所以系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率为243250.(1)古典概型的概率公式P(A)=mn=A中所含的基本事件数基本事件总数(2)条件概率在A发生的条件下B发生的概率P(B|A)=P(AB)P(A).(3)相互独立事件同时发生的概率P(AB)=P(A)P(B).(4)独立重复试验如果事件A在一次试验中发生的概率是p,那么它在n次独立重复试验中恰好发生k次的概率为Cknpk(1-p)n-k,k=0,1,2,…,n.[典型例题]命题角度一超几何分布的判断、期望与方差的求解(2019·唐山模拟)甲、乙两位工人分别用两种不同工艺生产同一种零件,已知尺寸在[223,228](单位:mm)内的零件为一等品,其余为二等品.甲、乙当天生产零件尺寸的茎叶图如图所示:随机变量的分布列、均值与方差(1)从甲、乙两位工人当天所生产的零件中各随机抽取1个零件,求抽取的2个零件等级互不相同的概率;(2)从工人甲当天生产的零件中随机抽取3个零件,记这3个零件中一等品的数量为X,求X的分布列和数学期望.【解】(1)由茎叶图可知,甲当天生产了10个零件,其中4个一等品,6个二等品;乙当天生产了10个零件,其中5个一等品,5个二等品.所以抽取的2个零件等级互不相同的概率P=4×5+6×510×10=12.(2)X可取0,1,2,3P(X=0)=C04C36C310=16;P(X=1)=C14C26C310=12;P(X=2)=C24C16C310=310;P(X=3)=C34C06C310=130.X的分布列为X0123P1612310130所以随机变量X的数学期望E(X)=0×16+1×12+2×310+3×130=65.(1)求离散型随机变量分布列的关键是正确理解随机变量取每一个值所表示的具体事件,然后综合应用各类求概率的公式,求出概率.(2)对于实际问题中的随机变量X,如果能够断定它服从超几何分布H(N,M,n),则其概率可直接利用公式P(X=k)=CkMCn-kN-MCnN(k=0,1,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*).[提醒]本题的易错点是混淆超几何分布与二项分布,两种分布的本质差别在于“有放回”和“无放回”,“有放回”是二项分布,“无放回”是超几何分布.命题角度二二项分布的判断、期望与方差的求解(一题多解)(2019·合肥模拟)师大附中学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)记录了他们的幸福度分数.(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”,求从这16人中随机选取3人,至多有1人的幸福度是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示选到幸福度为“极幸福”的人数,求ξ的分布列及数学期望.【解】(1)由茎叶图得8.6出现的次数最多,所以众数为8.6;将茎叶图中的所有数据从小到大排列,得中位数为8.75.(2)设事件Ai(i=0,1,2,3)表示所取3人中有i人的幸福度是“极幸福”,至多有1人的幸福度是“极幸福”记为事件A,结合茎叶图得P(A)=P(A0)+P(A1)=C312C316+C14C212C316=121140.(3)法一:ξ的可能取值为0,1,2,3,由样本估计总体得任选1人,其幸福度为“极幸福”的概率为416=14,则P(ξ=0)=343=2764;P(ξ=1)=C13×14×342=2764;P(ξ=2)=C23×142×34=964;P(ξ=3)=143=164.ξ的分布列为ξ0123P27642764964164所以E(ξ)=0×2764+1×2764+2×964+3×
本文标题:(京津鲁琼专用)2020版高考数学二轮复习 第二部分 专题四 概率与统计 第1讲 概率、离散型随机变
链接地址:https://www.777doc.com/doc-8339014 .html