您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 各地2018年中考数学试卷分类汇编 尺规作图(pdf,含解析)
尺规作图一.选择题1.(2018·湖北襄阳·3分)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cmB.19cmC.22cmD.25cm【分析】利用线段的垂直平分线的性质即可解决问题.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选:B.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质,属于中考常考题型.2.(2018·湖南郴州·3分)如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6B.2C.3D.【分析】直接利用角平分线的作法得出OP是∠AOB的角平分线,再利用直角三角形的性质得出答案.【解答】解:过点M作ME⊥OB于点E,由题意可得:OP是∠AOB的角平分线,则∠POB=×60°=30°,∴ME=OM=3.故选:C.【点评】此题主要考查了基本作图以及含30度角的直角三角形,正确得出OP是∠AOB的角平分线是解题关键.A.rB.(1+)rC.(1+)rD.r【答案】D【解析】分析:如图连接CD,AC,DG,AG.在直角三角形即可解决问题;详解:如图连接CD,AC,DG,AG.3.(2018•湖州•3分)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG=r,故选:D.点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4.(2018•嘉兴•3分)用尺规在一个平行四边形内作菱形,下列作法中错误的是()A.(A)B.(B)C.(C)D.(D)【答案】C【解析】分析:由作图,可以证明A.B.D中四边形ABCD是菱形,C中ABCD是平行四边形,即可得到结论.详解:A.∵AC是线段BD的垂直平分线,∴BO=OD,∴∠AOD=∠COB=90°.∵AD∥BC,∴∠ADB=∠DBC,∴△AOD≌△COB,∴AO=OC,∴四边形ABCD是菱形.故A正确;B.由作图可知:AD=AB=BC.∵AD∥BC,∴四边形ABCD是平行四边形.∵AD=AB,∴四边形ABCD是菱形.故B正确;C.由作图可知AB.CD是角平分线,可以得到ABCD是平行四边形,不能得到ABCD是菱形.故C错误;D.如图,∵AE=AF,AG=AG,EG=FG,∴△AEG≌△AFG,∴∠EAG=∠FAG.∵AD∥BC,∴∠DAC=∠ACB,∴∠FAG=∠ACB,∴AB=BC,同理∠DCA=∠BCA,∴∠BAC=∠DCA,∴AB∥DC.∵AD∥BC,∴四边形ABCD是平行四边形.∵AB=BC,∴四边形ABCD是菱形.故D正确.故选C.点睛:本题考查了菱形的判定与平行四边形的性质.解题的关键是弄懂每个图形是如何作图的.5.(2018•贵州安顺•3分)已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是()A.B.C.D.【答案】D【解析】分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D正确.详解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选D.点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.二.填空题1.(2018•江苏淮安•3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A.B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是.【分析】连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;【解答】解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=,∴CD=BC﹣DB=5﹣=,故答案为.【点评】本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.2.(2018•山东东营市•3分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是15.【分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.【解答】解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S△ACD=•AC•DQ=×10×3=15,故答案为:15.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.3.(2018•湖州•4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是13或49(不包括5).【分析】当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.【解答】解:当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.故答案为13或49.【点评】本题考查作图﹣应用与设计、全等三角形的判定、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.三.解答题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;【点评】本题考查作图﹣应用与设计、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.(2018•江苏无锡•10分)如图,平面直角坐标系中,已知点B的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.【分析】(1)①作线段OB的垂直平分线AC,满足条件,②作矩形OA′BC′,直线A′C′,满足条件;(2)分两种情形分别求解即可解决问题;【解答】(1)解:如图△ABC即为所求;(2)解:这样的直线不唯一.①作线段OB的垂直平分线AC,满足条件,此时直线的解析式为y=﹣x+.②作矩形OA′BC′,直线A′C′,满足条件,此时直线A′C′的解析式为y=﹣x+4.【点评】本题考查作图﹣复杂作图,待定系数法等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2018•广东•6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A.B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.4.(2018•广西贵港•5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.【分析】根据作一个角等于已知角,线段截取以及垂线的尺规作法即可求出答案.【解答】解:如图所示,△ABC为所求作【点评】本题考查尺规作图,解题的关键是熟练运用尺规作图的基本方法,本题属于中等题型.
本文标题:各地2018年中考数学试卷分类汇编 尺规作图(pdf,含解析)
链接地址:https://www.777doc.com/doc-8366525 .html