您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2020年四川省德阳市中考数学试卷含答案解析
第1页,共25页2020年四川省德阳市中考数学试卷题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.的相反数是( )A.3B.-3C.D.2.下列运算正确的是( )A.a2•a3=a6B.(3a)3=9a3C.3a-2a=1D.(-2a2)3=-8a63.如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A=20°,则∠ACG=( )A.160°B.110°C.100°D.70°4.下列说法错误的是( )A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得5.多边形的内角和不可能为( )A.180°B.540°C.1080°D.1200°6.某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是( )第2页,共25页A.19.5元B.21.5元C.22.5元D.27.5元7.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是( )A.a<b<cB.b<a<cC.a<c<bD.c<b<a8.已知函数y=,当函数值为3时,自变量x的值为( )A.-2B.-C.-2或-D.-2或-9.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是( )A.20πB.18πC.16πD.14π10.如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A'BC'.此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为( )A.B.C.D.11.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为( )A.2B.2-2C.2+2D.212.已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是( )(1)2a+b=0;第3页,共25页(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a-mb-m=0,则m的取值范围是-<m<0.A.1B.2C.3D.4二、填空题(本大题共6小题,共24.0分)13.小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是______.14.把多项式ax2-4a分解因式的结果是______.15.如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=______.16.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=______.17.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是______.18.如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行______海里就开始有触礁的危险.第4页,共25页三、解答题(本大题共7小题,共78.0分)19.计算:(-2)-2-|-2|+(-)0--2cos30°.20.如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=,求DF的长.21.为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格:D.不及格.根据调查统计结第5页,共25页果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.22.如图,一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.第6页,共25页23.推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.24.如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;第7页,共25页(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.25.如图1,抛物线y=ax2-2ax-3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.第8页,共25页第9页,共25页答案和解析1.【答案】D【解析】解:的相反数为-.故选:D.在一个数前面放上“-”,就是该数的相反数.本题考查了相反数的概念,求一个数的相反数只要改变这个数的符号即可.2.【答案】D【解析】解:A、a2•a3=a5,故原题计算错误;B、(3a)3=27a3,故原题计算错误;C、3a-2a=a,故原题计算错误;D、(-2a2)3=-8a6,故原题计算正确;故选:D.利用同底数幂的乘法法则、积的乘方运算法则、合并同类项法则分别进行计算即可.此题主要考查了同底数幂的乘法、积的乘方运算、合并同类项,关键是掌握各计算法则.3.【答案】B【解析】解:∵AD⊥EF,∠A=20°,∴∠ABD=180°-∠A-∠ABD=180°-20°-90°=70°,∵EF∥GH,∴∠ACH=∠ABD=70°,∴∠ACG=180°-∠ACH=180°-70°=110°,故选:B.利用三角形的内角和定理,由AD⊥EF,∠A=20°可得∠ABD=70°,由平行线的性质定理可得∠ACH,易得∠ACG.本题主要考查了三角形的内角和定理和平行线的性质定理,熟记定理是解答此题的关键.第10页,共25页4.【答案】C【解析】解:方差可以衡量一组数据的波动大小,故选项A正确;抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B正确;一组数据的众数有一个或者几个,故选项C错误;抛掷一枚图钉针尖朝上的概率,不能用列举法求得,故选项D正确;故选:C.根据各个选项中的说法,可以判断是否正确,从而可以解答本题.本题考查抽样调查、用样本估计总体、众数和方差,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确5.【答案】D【解析】解:因为在这四个选项中不是180°的倍数的只有1200°.故选:D.多边形的内角和可以表示成(n-2)•180°(n≥3且n是整数),则多边形的内角和是180度的倍数,由此即可求出答案.本题主要考查多边形的内角和定理,牢记定理是解答本题的关键,难度不大.6.【答案】C【解析】解:这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.根据加权平均数定义即可求出这天销售的四种商品的平均单价.本题考查了加权平均数、扇形统计图,解决本题的关键是掌握加权平均数的定义.7.【答案】D【解析】解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=R.四边形的边心距为b=R×cos45°=R,正六边形的边心距为c=R×cos30°=R.第11页,共25页∵RRR,∴c<b<a,故选:D.根据三角函数即可求解.此题主要考查了正多边形和圆的性质,解决本题的关键是构造直角三角形,得到用半径表示的边心距;注意:正多边形的计算一般要转化为解直角三角形的问题来解决.8.【答案】A【解析】解:若x<2,当y=3时,-x+1=3,解得:x=-2;若x≥2,当y=3时,-=3,解得:x=-,不合题意舍去;∴x=-2,故选:A.根据分段函数的解析式分别计算,即可得出结论.本题考查反比例函数的性质、一次函数的图象上点的坐标特征;根据分段函数进行分段求解是解题的关键.9.【答案】B【解析】解:这个几何体的表面积=π•22+π•3•2+2π•2•2=18π,故选:B.由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.本题考查了由三视图判断几何体、圆锥和圆柱的计算以及勾股定理,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.10.【答案】D【解析】解:∵∠A=30°,∠ABC=90°,∴∠ACB=60°,∵将Rt△ABC绕点B逆时针方向旋转得到△A'BC',∴BC=BC',∠ACB=∠A'C'B=60°,第12页,共25页∴△BCC'是等边三角形,∴∠CBC'=60°,∴∠ABA'=60°,∴∠BEA=90°,设CE=a,则BE=a,AE=3a,∴,∴,∴△ABE与△ABC的面积之比为.故选:D.由旋转的性质得出BC=BC',∠ACB=∠A'C'B=60°,则△BCC'是等边三角形,∠CBC'=60°,得出∠BEA=90°,设CE=a,则BE=a,AE=3a,求出,可求出答案.本题考查了旋转的性质,直角三角形的性质,等边三角形的判定与性质;熟练掌握旋转的性质是解题的关键.11.【答案】B【解析】解:∵等腰直角三角形ABC的腰长为4,∴斜边AB=4,∵点P为该平面内一动点,且满足PC=2,∴点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,∵△ABC是等腰直角三角形,∴CM=AB=2,∵PC=2,∴PM=CM-CP=
本文标题:2020年四川省德阳市中考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-8381806 .html