您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 电磁感应中的单双杆模型
电磁感应中的单双杆问题一、单杆问题(一)与动力学相结合的问题1、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接一电动势为E,内阻为r的电源,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度?2、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接一电阻为R,MN在恒力F的作用下从静止开始运动,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度?3、金属导轨左端接电容器,电容为C,轨道上静止一长度为L的金属棒cd,整个装置处于垂直纸面磁感应强度为B的匀强磁场当中,现在给金属棒一初速度v,试求金属棒的最大速度?(二)与能量相结合的题型1、倾斜轨道与水平面夹角为,整个装置处于与轨道相垂直的匀强磁场当中,导轨顶端连有一电阻R,金属杆的电阻也为R其他电阻可忽略,让金属杆由静止释放,经过一段时间后达到最大速度mV,且在此过程中电阻上生成的热量为Q。求:(1)金属杆达到最大速度时安培力的大小(2)磁感应强度B为多少(3)求从静止开始到达到最大速度杆下落的高度2.(20分)如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,两平行轨道中够长。已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2。(1)求导体棒ab从A下落r/2时的加速度大小。(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和R2上的电功率P2。(3)当导体棒进入磁场II时,施加一竖直向上的恒定外力F=mg的作用,求导体棒ab从开始进入磁场II到停止运动所通过的距离和电阻R2上所产生的热量。二、双杆问题(一)、同一磁场中的等宽轨道1、水平放置的光滑金属轨道上静止两根质量为m的金属棒MN、PQ。电阻均为R,现给PQ一个向右的初速度v,其他部分及连接处电阻不计,试求:(1)金属棒MN在轨道上的最大速度?(2)回路中产生的最大热量(二)、同一磁场不等宽轨道如图所示,光滑、足够长、不计电阻、轨道处在磁感应强度为B的匀强磁场当中,间距左边为l,右边为2l的平行金属导轨上静止M、N两根同样粗细的同种金属棒,除金属棒上电阻为R、2R外,其他电阻均不计。现给N棒一根瞬时冲量I(1)求金属棒N受到冲量后的瞬间通过金属导轨的感应电流(2)设金属棒N在运动到宽轨道前M已经达到最大速度,求金属棒M的最大速度值;(3)金属棒N进入Ⅱ宽轨道区后,金属棒MN再次达到匀速运动状态,。求整个过程中金属棒MN中产生的总焦耳热。(三)、不同磁场区域的平行轨道1、(20分)如图13所示,光滑、足够长、不计电阻、轨道间距为l的平行金属导轨MN、PQ,水平放在竖直向下的磁感应强度不同的两个相邻的匀强磁场中,左半部分为Ι匀强磁场区,磁感应强度为B1;右半部分为Ⅱ匀强磁场区,磁感应强度为B2,且B1=2B2。在Ι匀强磁场区的左边界垂直于导轨放置一质量为m、电阻为R1的金属棒a,在Ι匀强磁场区的某一位置,垂直于导轨放置另一质量也为m、电阻为R2的金属棒b。开始时b静止,给a一个向右冲量I后a、b开始运动。设运动过程中,两金属棒总是与导轨垂直。(1)求金属棒a受到冲量后的瞬间通过金属导轨的感应电流;(2)设金属棒b在运动到Ι匀强磁场区的右边界前已经达到最大速度,求金属棒b在Ι匀强磁场区中的最大速度值;(3)金属棒b进入Ⅱ匀强磁场区后,金属棒b再次达到匀速运动状态,设这时金属棒a仍然在Ι匀强磁场区中。求金属棒b进入Ⅱ匀强磁场区后的运动过程中金属棒a、b中产生的总焦耳热。练习1、如图所示,固定于水平绝缘平面上的粗糙平行金属导轨,垂直于导轨平面有一匀强磁场。质量为m的金属棒cd垂直放在导轨上,除电阻R和金属棒cd的电阻r外,其余电阻不计;现用水平恒力F作用于金属棒cd上,由静止开始运动的过程中,下列说法正确的是:A、水平恒力F对cd棒做的功等于电路中产生的电能B、只有在cd棒做匀速运动时,F对cd棒做的功才等于电路中产生的电能C、无论cd棒做何种运动,它克服安培力所做的功一定等于电路中产生的电能D、R两端的电压始终等于cd棒中的感应电动势的值2、画出下列图中导体棒的速度图像3、(18分)如图所示,两根足够长的光滑金属导轨MN、PQ间距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止。取g=10m/s2,问:(1)通过cd棒的电流I是多少,方向如何?(2)棒ab受到的力F多大?图13B1B2IabPQMNⅡΙΙ(3)棒cd每产生Q=0.1J的热量,力F做的功W是多少?4、如图所示,在水平台面上铺设两条很长但电阻可忽略的平行导轨MN和PQ,导轨间宽度L=0.50m.水平部分是粗糙的,置于匀强磁场中,磁感应强度B=0.60T,方向竖直向上.倾斜部分是光滑的,该处没有磁场.直导线a和b可在导轨上滑动,质量均为m=0.20kg,电阻均为R=0.15Ω.b放在水平导轨上,a置于斜导轨上高h=0.050m处,无初速释放.设在运动过程中a、b间距离足够远,且始终与导轨MN、PQ接触并垂直,回路感应电流的磁场可忽略不计.求:(1)由导线和导轨组成回路的感应电流最大值是多少?(2)如果导线与水平导轨间的动摩擦因数μ=0.10,当导线b的速度达到最大值时,导线a的加速度多大?(3)如果导线与水平导轨间光滑,回路中产生多少焦耳热?5、.如图所示,两根间距为L的金属导轨MN和PQ,电阻不计,左端向上弯曲,其余水平,水平导轨左端有宽度为d、方向竖直向上的匀强磁场I,右端有另一磁场II,其宽度也为d,但方向竖直向下,磁场的磁感强度大小均为B。有两根质量均为m、电阻均为R的金属棒a和b与导轨垂直放置,b棒置于磁场II中点C、D处,导轨除C、D两处(对应的距离极短)外其余均光滑,两处对棒可产生总的最大静摩擦力为棒重力的K倍,a棒从弯曲导轨某处由静止释放。当只有一根棒作切割磁感线运动时,它速度的减小量与它在磁场中通过的距离成正比,即vx。(1)若a棒释放的高度大于h0,则a棒进入磁场I时会使b棒运动,判断b棒的运动方向并求出h0。(2)若将a棒从高度小于h0的某处释放,使其以速度v0进入磁场I,结果a棒以v0/2的速度从磁场I中穿出,求在a棒穿过磁场I过程中通过b棒的电量q和两棒即将相碰时b棒上的电功率Pb。(3)若将a棒从高度大于h0的某处释放,使其以速度v1进入磁场I,经过时间t1后a棒从磁场I穿出时的速度大小为2v1/3,求此时b棒的速度大小,在如图坐标中大致画出t1时间内两棒的速度大小随时间的变化图像,并求出此时b棒的位置。
本文标题:电磁感应中的单双杆模型
链接地址:https://www.777doc.com/doc-8456501 .html