您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2019-2020学年高中数学 第1章 导数及其应用章末复习课讲义 新人教B版选修2-2
-1-第1章导数及其应用导数的几何意义及其应用利用导数的几何意义求切线方程时关键是搞清所给的点是不是切点,常见的类型有两种,一是求“在某点处的切线方程”,则此点一定为切点,先求导,再求斜率代入直线方程即可得;另一类是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点为Q(x1,y1),则切线方程为y-y1=f′(x1)(x-x1),再由切线过点P(x0,y0)得y0-y1=f′(x1)(x0-x1),①又y1=f(x1),②由①②求出x1,y1的值,即求出了过点P(x0,y0)的切线方程.【例1】(1)曲线y=xex-1在点(1,1)处切线的斜率等于()A.2eB.e-2-C.2D.1(2)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()[思路探究](1)曲线在点(1,1)处的切线斜率即为该点处的导数.(2)由导数值的大小变化,确定原函数的变化情况,从而得出结论.[解析](1)y′=ex-1+xex-1=(x+1)ex-1,故曲线在点(1,1)处的切线斜率为k=2.(2)从导函数的图象可以看出,导函数值先增大后减小,x=0时最大,所以函数f(x)的图象的变化率也先增大后减小,在x=0时变化率最大.A项,在x=0时变化率最小,故错误;C项,变化率是越来越大的,故错误;D项,变化率是越来越小的,故错误;B项正确.[答案](1)C(2)B1.已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[解](1)∵P(2,4)在曲线y=13x3+43上,且y′=x2,∴在点P(2,4)处的切线的斜率k=4.∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.(2)设曲线y=13x3+43与过点P(2,4)的切线相切于点Ax0,13x30+43,则切线的斜率k=x20.-3-∴切线方程为y-13x30+43=x20(x-x0),即y=x20·x-23x30+43.∵点P(2,4)在切线上,∴4=2x20-23x30+43,即x30-3x20+4=0,∴x30+x20-4x20+4=0.∴x20(x0+1)-4(x0+1)(x0-1)=0,∴(x0+1)(x0-2)2=0,解得x0=-1或x0=2,故所求的切线方程为4x-y-4=0或x-y+2=0.(3)设切点为(x0,y0),则切线的斜率k=x20=4,∴x0=±2.∴切点为(2,4)或-2,-43.∴斜率为4的曲线的切线方程为y-4=4(x-2)和y+43=4(x+2),即4x-y-4=0和12x-3y+20=0.利用导数判断函数的单调性利用导数的符号判断函数的增减性,进而确定函数的单调区间,这是导数的几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合思想.这部分内容要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′(x)≤0且f′(x)=0的根有有限个.【例2】设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[思路探究](1)利用导数的几何意义和求导运算建立方程组求未知数.(2)利用导数与函数单调性的关系判断函数的单调性.[解](1)因为f(x)=xea-x+bx,所以f′(x)=(1-x)ea-x+b.依题设,f2=2e+2,f′2=e-1,即2ea-2+2b=2e+2,-ea-2+b=e-1.-4-解得a=2,b=e.(2)由(1)知f(x)=xe2-x+ex.由f′(x)=e2-x(1-x+ex-1)及e2-x>0知,f′(x)与1-x+ex-1同号.令g(x)=1-x+ex-1,则g′(x)=-1+ex-1.所以,当x∈(-∞,1)时,g′(x)0,g(x)在区间(-∞,1)上单调递减;当x∈(1,+∞)时,g′(x)0,g(x)在区间(1,+∞)上单调递增.故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,从而g(x)0,x∈(-∞,+∞).综上可知,f′(x)0,x∈(-∞,+∞),故f(x)的单调递增区间为(-∞,+∞).2.(1)讨论函数f(x)=x-2x+2ex的单调性,并证明当x>0时,(x-2)ex+x+2>0;(2)证明:当a∈[0,1)时,函数g(x)=ex-ax-ax2(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.[解](1)f(x)的定义域为(-∞,-2)∪(-2,+∞).f′(x)=x-1x+2ex-x-2exx+22=x2exx+22≥0,当且仅当x=0时,f′(x)=0,所以f(x)在(-∞,-2),(-2,+∞)上单调递增.因此当x∈(0,+∞)时,f(x)f(0)=-1.所以(x-2)ex-(x+2),即(x-2)ex+x+20.(2)g′(x)=x-2ex+ax+2x3=x+2x3(f(x)+a).由(1)知,f(x)+a单调递增.对任意a∈[0,1),f(0)+a=a-1<0,f(2)+a=a≥0.因此,存在唯一xa∈(0,2],使得f(xa)+a=0,即g′(xa)=0.当0xxa时,f(x)+a0,g′(x)0,g(x)单调递减;当xxa时,f(x)+a0,g′(x)0,g(x)单调递增.因此g(x)在x=xa处取得最小值,最小值为g(xa)=exa-axa+1x2a=exa+fxaxa+1x2a=exaxa+2.于是h(a)=exaxa+2.-5-由exx+2′=x+1exx+22>0,得y=exx+2单调递增,所以,由xa∈(0,2],得12=e00+2<h(a)=exaxa+2≤e22+2=e24.因为y=exx+2单调递增,对任意λ∈12,e24,存在唯一的xa∈(0,2],a=-f(xa)∈[0,1),使得h(a)=λ.所以h(a)的值域是12,e24.综上,当a∈[0,1)时,g(x)有最小值h(a),h(a)的值域是12,e24.利用导数研究函数的极值、最值由函数的解析式能求出函数的极值和最值,反过来由函数的极值或最值也能求出参数的值或取值范围.另外,这部分内容可能会和恒成立问题、有解等问题联系到一起考查.【例3】已知函数f(x)=x3+ax2+b的图象上一点P(1,0),且在点P处的切线与直线3x+y=0平行.(1)求函数f(x)的解析式;(2)求函数f(x)在区间[0,t](0t3)上的最大值和最小值;(3)在(1)的结论下,关于x的方程f(x)=c在区间[1,3]上恰有两个相异的实根,求实数c的取值范围.[思路探究](1)由f1=0,f′1=-3,求出a,b即可.(2)对t分0t≤2与2t3两种情况求最值.(3)构造函数g(x)=f(x)-c转化为g(x)在[1,3]上有实根求解.[解](1)因为f′(x)=3x2+2ax,曲线在P(1,0)处的切线斜率为:f′(1)=3+2a,即3+2a=-3,a=-3.又函数过(1,0)点,即-2+b=0,b=2.所以a=-3,b=2,f(x)=x3-3x2+2.(2)由f(x)=x3-3x2+2,得f′(x)=3x2-6x.由f′(x)=0,得x=0或x=2.①当0t≤2时,在区间(0,t)上f′(x)0,f(x)在[0,t]上是减函数,所以f(x)的最大值为f(0)=2,f(x)的最小值为f(t)=t3-3t2+2.②当2t3时,当x变化时,f′(x),f(x)的变化情况如下表:-6-x0(0,2)2(2,t)tf′(x)0-0++f(x)2单调递减↘极小值-2单调递增↗t3-3t2+2f(x)的最小值为f(2)=-2,f(x)的最大值为f(0)与f(t)中较大的一个.f(t)-f(0)=t3-3t2=t2(t-3)0.所以f(x)的最大值为f(0)=2.(3)令g(x)=f(x)-c=x3-3x2+2-c,g′(x)=3x2-6x=3x(x-2).在x∈[1,2)上,g′(x)0;在x∈(2,3]上,g′(x)0.要使g(x)=0在[1,3]上恰有两个相异的实根,则g1≥0,g20,g3≥0,解得-2c≤0.3.(2019·全国卷Ⅰ)已知函数f(x)=sinx-ln(1+x),f′(x)为f(x)的导数.证明:(1)f′(x)在区间-1,π2存在唯一极大值点;(2)f(x)有且仅有2个零点.[解](1)设g(x)=f′(x),则g(x)=cosx-11+x,g′(x)=-sinx+11+x2,当x∈-1,π2时,g′(x)单调递减,而g′(0)0,g′π20,可得g′(x)在-1,π2有唯一零点,设为α.则当x∈(-1,α)时,g′(x)0;当x∈α,π2时,g′(x)0.所以g(x)在(-1,α)单调递增,在α,π2单调递减,故g(x)在-1,π2存在唯一极大值点,即f′(x)在-1,π2存在唯一极大值点.(2)f(x)的定义域为(-1,+∞).(ⅰ)当x∈(-1,0]时,由(1)知,f′(x)在(-1,0)单调递增,而f′(0)=0,所以当x∈(-1,0)时,f′(x)0,故f(x)在(-1,0)单调递减.又f(0)=0,从而x=0是f(x)在(-1,0]的唯一零点.(ⅱ)当x∈0,π2时,由(1)知,f′(x)在(0,α)单调递增,在α,π2单调递减,而f′(0)-7-=0,f′π20,所以存在β∈α,π2,使得f′(β)=0,且当x∈(0,β)时,f′(x)0;当x∈β,π2时,f′(x)0.故f(x)在(0,β)单调递增,在β,π2单调递减.又f(0)=0,fπ2=1-ln1+π20,所以当x∈0,π2时,f(x)0.从而,f(x)在0,π2没有零点.(ⅲ)当x∈π2,π时,f′(x)0,所以f(x)在π2,π单调递减.而fπ20,f(π)0,所以f(x)在π2,π有唯一零点.(ⅳ)当x∈(π,+∞)时,ln(x+1)1,所以f(x)0,从而f(x)在(π,+∞)没有零点.综上,f(x)有且仅有2个零点.函数与方程的思想函数的单调性是证明不等式的一种常用方法,证明时灵活构造函数关系,尽可能选择求导和判断导数符号都比较容易的函数,如果证明f(x)>g(x),x∈(a,b),可转化为证明F(x)=f(x)-g(x)与0的关系,若F′(x)>0,则函数F(x)在(a,b)上是增函数.若F(a)≥0,则由增函数的定义,知当x∈(a,b)时,有F(x)>F(a)≥0,即f(x)>g(x)成立,同理可证明f(x)<g(x),x∈(a,b).【例4】设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(1)求a,b的值;(2)若对任意的x∈[0,3],都有f(x)c2成立,求c的取值范围.[思路探究](1)利用f′(1)=0,f′(2)=0,列方程组求解.(2)转化为求函数f(x)的最大值问题.[解](1)f′(x)=6x2+6ax+3b.因为函数f(x)在x=1及x=2时取得极值,则有f′(1)=0,f′(2)=0,即6+6a+3b=0,24+12a+3b=0,解得a=-3,b=4.(2)由(1)可知,f(x)=2x3-9x2+12x+8c,则f′(x)=6x2-18x+12=6(x-1)(x-2).当x∈[0,1)时,f′(x)0;当x∈[1,2]时,f′(x)0;当x∈(2,3]时,f′(x)0.所以当x=1时,f(x)取得极大值f(1)=5+8c,当x=2时,f(x)取得极小值f(2)=4+8c,又f(0)=8c
本文标题:2019-2020学年高中数学 第1章 导数及其应用章末复习课讲义 新人教B版选修2-2
链接地址:https://www.777doc.com/doc-8461153 .html