您好,欢迎访问三七文档
1§6.4数列的递推关系与通项考情考向分析由数列的递推关系求通项是高考的热点,考查学生的转化能力和综合应用能力,一般以解答题形式出现,中档难度.1.递推数列(1)概念:数列的连续若干项满足的等量关系an+k=f(an+k-1,an+k-2,…,an)称为数列的递推关系.由递推关系及k个初始值确定的数列叫递推数列.(2)求递推数列通项公式的常用方法:构造法、累加(乘)法、归纳猜想法.2.数列递推关系的几种常见类型(1)形如an-an-1=f(n)(n∈N*,且n≥2)方法:累加法,即当n∈N*,n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1.(2)形如anan-1=f(n)(n∈N*且n≥2)方法:累乘法,即当n∈N*,n≥2时,an=anan-1·an-1an-2·…·a2a1·a1.注意:n=1不一定满足上述形式,所以需要检验.(3)形如an=pan-1+q(n∈N*且n≥2)方法:化为an+qp-1=pan-1+qp-1的形式.令bn=an+qp-1,即得bn=pbn-1,{bn}为等比数列,从而求得数列{an}的通项公式.(4)形如an=pan-1+f(n)(n∈N*且n≥2)方法:两边同除pn,得anpn=an-1pn-1+fnpn,令bn=anpn,得bn=bn-1+fnpn,转化为利用累加法求bn若fnpn为常数,则{bn}为等差数列,从而求得数列{an}的通项公式.概念方法微思考用构造法求数列通项一般构造什么样的数列?这体现了何种数学思想方法?提示构造等差或等比数列,体现了转化与化归思想.2题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在数列{an}中,a1=1,an=n-1nan-1(n≥2),则an=1n.(√)(2)在数列{an}中,a1=2,an+1=an+3n+2,则an=32n2+n2.(√)(3)已知在数列{an}中,a1=1,前n项和Sn=n+23an,则an=nn+12.(√)(4)已知数列{an}的前n项和为Sn,且满足log2(Sn+1)=n+1,则an=2n.(×)题组二教材改编2.[P52公式推导过程]在数列{an}中,已知a1=1,an+1an=nn+1,那么an=________.答案1n3.[P41T13]若数列{an}满足a1=1,an=n+an-1(n≥2,n∈N*),则数列{an}的通项公式为________.答案an=nn+124.[P68T14]在数列{an}中,a1=1,an+1=an1+nan,则an=________.答案2n2-n+2解析an+1=an1+nan可化为1an+1-1an=n,当n≥2时,1a2-1a1=1,1a3-1a2=2,1a4-1a3=3,…,1an-1an-1=n-1.累加得1an-1a1=1+2+…+(n-1),∴1an=nn-12+1a1=n2-n+22,又a1=1也符合上式,∴an=2n2-n+2.题组三易错自纠5.在斐波那契数列1,1,2,3,5,8,13,…中,an,an+1,an+2的关系是____________.3答案an+2=an+an+16.已知数列{an}满足a1=1,an+1=3an+2,则an=____________.答案2×3n-1-1解析因为an+1=3an+2,所以an+1+1=3(an+1),所以an+1+1an+1=3,所以数列{an+1}为等比数列,公比q=3,又a1+1=2,所以an+1=2×3n-1,所以an=2×3n-1-1.题型一累加法、累乘法求数列的通项公式1.已知在数列{}an中,a1=0,an+1=an+2n-1,求an.解由已知得an-an-1=2n-3,当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(2n-3)+(2n-5)+…+1+0=(n-1)2.当n=1时,a1=0符合上式,所以an=(n-1)2,n∈N*.2.数列{}an满足a1=12,an=an-1+1n2-n(n≥2,n∈N*),求数列{}an的通项.解由an-an-1=1n2-n(n≥2,n∈N*)且a1=12,an-an-1=1n2-n=1n-1-1nan-1-an-2=1n-2-1n-1,…,a2-a1=1-12,各式累加整理得an=32-1n,n取1时,32-1=12=a1,所以an=32-1n(n∈N*).3.已知在数列{}an中,a1=2,且nan+1=(n+2)an,求an.4解由已知得an+1an=n+2n,当n≥2时,an=anan-1·an-1an-2·…·a2a1·a1=n+1n-1·nn-2·…·31·2=n(n+1),当n=1时,a1=2也符合上式,所以an=n(n+1)(n∈N*).思维升华(1)求形如an+1=an+f(n)数列的通项公式,此类题型一般可以利用累加法求其通项公式,即an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,累加求得通项公式;(2)求形如an+1an=f(n)数列的通项,此类题型一般可以利用累乘法求其通项公式,即an=anan-1·an-1an-2·…·a2a1·a1,累乘求得其通项.题型二构造等差数列求通项例1(1)已知在正项数列{an}中,Sn表示前n项和且2Sn=an+1,则an=________.答案2n-1解析方法一由已知2Sn=an+1,得当n=1时,a1=1;当n≥2时,an=Sn-Sn-1,代入已知得2Sn=Sn-Sn-1+1,即Sn-1=(Sn-1)2.又an0,故Sn-1=Sn-1或Sn-1=1-Sn(舍),即Sn-Sn-1=1(n≥2),由定义得{Sn}是以1为首项,1为公差的等差数列,∴Sn=n.故an=2n-1.方法二∵2Sn=an+1,∴4Sn=(an+1)2,当n≥2时,4Sn-1=(an-1+1)2,两式相减,得4an=(an+1)2-(an-1+1)2,化简可得(an+an-1)(an-an-1-2)=0,∵an0,∴an-an-1=2,∵2a1=a1+1,∴a1=1.∴数列{an}是以1为首项,2为公差的等差数列,∴an=2n-1.(2)已知在数列{}an中,a1=2,an+1=2an+3·2n,则an=________.答案2n·32n-12,n∈N*解析在递推关系an+1=2an+3·2n的两边同除以2n+1,得an+12n+1=an2n+32,令bn+1=an+12n+1,则bn+1=bn+32,b1=1,5所以{bn}是以1为首项,32为公差的等差数列.所以bn=1+32(n-1)=32n-12,故an=2n·32n-12,n∈N*.思维升华(1)形如an+1=pan+q·bn的递推关系可构造等差数列.(2)对于含an,Sn混合型的递推关系,可通过an=a1,n=1,Sn-Sn-1,n≥2消去an或Sn.跟踪训练1(1)在数列{an}中,已知a1=1,an+1=2anan+2,则an=________.答案2n+1,n∈N*解析由已知可知an≠0,∴1an+1=1an+12,即1an+1-1an=12,又1a1=1,∴1an是以1为首项,12为公差的等差数列,1an=1a1+(n-1)×12=n+12,∴an=2n+1,n∈N*.(2)已知在数列{}an中,a1=15,且当n≥2时,有an-1-an-4anan-1=0,则an=____________.答案14n+1(n∈N*)解析由题意知an≠0,将等式an-1-an-4anan-1=0两边同除以anan-1得1an-1an-1=4,n≥2,则数列1an为等差数列,且首项为1a1=5,公差d=4,故1an=1a1+(n-1)d=5+4(n-1)=4n+1,∴an=14n+1(n∈N*).题型三构造等比数列求通项公式例2(1)已知数列{an}满足a1=2,an+1=2an+2,求数列{an}的通项公式.解∵an+1=2an+2,∴an+1+2=2(an+2),又a1+2=4,∴{an+2}是以4为首项,2为公比的等比数列,6∴an+2=4·2n-1,∴an=2n+1-2(n∈N*).(2)已知数列{an}中,a1=1,an·an+1=12n,记T2n为{an}的前2n项的和,bn=a2n+a2n-1,n∈N*,求数列{bn}的通项公式.解∵an·an+1=12n,∴an+1·an+2=12n+1,∴an+2an=12,即an+2=12an.∵bn=a2n+a2n-1,∴bn+1bn=a2n+2+a2n+1a2n+a2n-1=12a2n+12a2n-1a2n+a2n-1=12,∵a1=1,a1·a2=12,∴a2=12,∴b1=a1+a2=32.∴{bn}是首项为32,公比为12的等比数列.∴bn=32×12n-1=32n(n∈N*).思维升华形如an=pan-1+q(pq≠0)型的递推关系,可构造等比数列求通项公式.跟踪训练2(1)已知数列{}an满足an=13an-1+2,a1=1,求数列{}an的通项公式.解设an+λ=13(an-1+λ),解得λ=-3,则an-3=13(an-1-3),令bn=an-3,则数列{}bn是以b1=a1-3=-2为首项,13为公比的等比数列,所以bn=-23n-1,所以an=3-23n-1(n∈N*).(2)(2018·苏州、无锡、常州、镇江调研)已知n为正整数,数列{an}满足an0,4(n+1)a2n-na2n+1=0,若a1=2,求an.解由已知可得a2n+1n+1=4·a2nn,∵an0,∴an+1n+1=2·ann,又a1=2,∴ann是以a1=2为首项,2为公比的等比数列,7∴ann=2n,∴an=n·2n(n∈N*).1.已知a1=3,an+1=3n-13n+2an(n≥1,n∈N*),则an=________.答案63n-1解析当n≥2时,an=3n-1-13n-1+2·3n-2-13n-2+2·…·3×2-13×2+2·3-13+2a1=3n-43n-1·3n-73n-4·…·58·25·3=63n-1.a1=3也符合上式,所以an=63n-1.2.已知在数列{}an中,a1=12,an+1=an+14n2-1,则an=____________.答案4n-34n-2(n∈N*)解析由已知可得an+1-an=14n2-1=1212n-1-12n+1,令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a2-a1)+(a3-a2)+…+(an-an-1)=121-13+13-15+…+12n-3-12n-1,∴an-a1=121-12n-1,∴an=a1+12-12·12n-1,即an=1-14n-2=4n-34n-2(n∈N*)经验证a1=12也符合.3.在数列{an}中,若a1=2,an+1=an+ln1+1n,则an=________.答案2+lnn(n∈N*)解析∵当n≥2时,an=an-1+ln1+1n-1=an-1+lnnn-1,8an-1=an-2+lnn-1n-2,an-2=an-3+lnn-2n-3,…,a2=a1+ln2,累加可得an=a1+lnnn-1×n-1n-2×n-2n-3×…×2=a1+lnn,∴an=2+lnn,n∈N*(经验证a1=2也符合此式).4.已知各项均为正数的数列{an}的前n项和满足Sn1,且6Sn=(an+1)(an+2),n∈N*,则数列{an}的通项公式为____________.答案an=3n-1解析由a1=S1=16(a1+1)(a1+2),解得a1=1或a1=2.由已知a1=S11,得a1=2.
本文标题:(江苏专用)2020版高考数学大一轮复习 第六章 数列 6.4 数列的递推关系与通项教案(含解析)
链接地址:https://www.777doc.com/doc-8466205 .html