您好,欢迎访问三七文档
1§11.3变量间的相关关系、统计案例最新考纲1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.2.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.3.通过对典型案例的探究,了解独立性检验的基本思想、方法及其初步应用.4.通过对典型案例的探究,进一步了解回归分析的基本思想、方法及简单应用.1.两个变量的线性相关(1)正相关在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(3)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程(1)最小二乘法求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫做最小二乘法.(2)回归方程方程y^=b^x+a^是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(xn,yn)的回归方程,其中a^,b^是待定参数.b^=∑ni=1xi-xyi-y∑ni=1xi-x2=∑ni=1xiyi-nxy∑ni=1x2i-nx2,a^=y-b^x.3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.2(2)样本点的中心对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其中(x,y)称为样本点的中心.(3)相关系数当r0时,表明两个变量正相关;当r0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.4.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.(2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为2×2列联表y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d构造一个随机变量K2=nad-bc2a+bc+da+cb+d,其中n=a+b+c+d为样本容量.(3)独立性检验利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.概念方法微思考1.变量的相关关系与变量的函数关系有什么区别?提示相同点:两者均是指两个变量的关系.不同点:①函数关系是一种确定的关系,相关关系是一种非确定的关系.②函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.2.如何判断两个变量间的线性相关关系?提示散点图中点的分布从整体上看大致在一条直线附近,或者通过计算相关系数作出判断.3.独立性检验的基本步骤是什么?提示列出2×2列联表,计算k值,根据临界值表得出结论.4.线性回归方程是否都有实际意义?根据回归方程进行预报是否一定准确?提示(1)不一定都有实际意义.回归分析是对具有相关关系的两个变量进行统计分析的方3法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.(2)根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.(×)(2)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.(√)(3)只有两个变量有相关关系,所得到的回归模型才有预测价值.(√)(4)某同学研究卖出的热饮杯数y与气温x(℃)之间的关系,得线性回归方程y^=-2.352x+147.767,则气温为2℃时,一定可卖出143杯热饮.(×)(5)事件X,Y关系越密切,则由观测数据计算得到的K2的观测值越大.(√)题组二教材改编2.为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,用下列哪种方法最有说服力()A.回归分析B.均值与方差C.独立性检验D.概率答案C解析“近视”与“性别”是两类变量,其是否有关,应用独立性检验判断.3.下面是2×2列联表:y1y2总计x1a2173x2222547总计b46120则表中a,b的值分别为()A.94,72B.52,50C.52,74D.74,52答案C解析∵a+21=73,∴a=52.又a+22=b,∴b=74.4.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据4收集到的数据(如下表),由最小二乘法求得回归方程y^=0.67x+54.9.零件数x(个)1020304050加工时间y(min)62758189现发现表中有一个数据看不清,请你推断出该数据的值为________.答案68解析由x=30,得y=0.67×30+54.9=75.设表中的“模糊数字”为a,则62+a+75+81+89=75×5,∴a=68.题组三易错自纠5.某医疗机构通过抽样调查(样本容量n=1000),利用2×2列联表和K2统计量研究患肺病是否与吸烟有关.计算得K2=4.453,经查阅临界值表知P(K2≥3.841)≈0.05,现给出四个结论,其中正确的是()A.在100个吸烟的人中约有95个人患肺病B.若某人吸烟,那么他有95%的可能性患肺病C.有95%的把握认为“患肺病与吸烟有关”D.只有5%的把握认为“患肺病与吸烟有关”答案C解析由已知数据可得,有1-0.05=95%的把握认为“患肺病与吸烟有关”.6.在一次考试中,5名学生的数学和物理成绩如下表:(已知学生的数学和物理成绩具有线性相关关系)学生的编号i12345数学成绩x8075706560物理成绩y7066686462现已知其线性回归方程为y^=0.36x+a^,则根据此线性回归方程估计数学得90分的同学的物理成绩为______.(四舍五入到整数)答案73解析x=60+65+70+75+805=70,y=62+64+66+68+705=66,所以66=0.36×70+a^,a^=40.8,5即线性回归方程为y^=0.36x+40.8.当x=90时,y^=0.36×90+40.8=73.2≈73.题型一相关关系的判断例1(1)观察下列各图形,其中两个变量x,y具有相关关系的图是()A.①②B.①④C.③④D.②③答案C解析由散点图知③中的点都分布在一条直线附近.④中的点都分布在一条曲线附近,所以③④中的两个变量具有相关关系.(2)(2018·广州质检)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)的柱形图.以下结论不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案D解析从2006年,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A选项正确;2007年二氧化硫排放量较2006年降低了很多,B选项正确;虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,C选项正确;自2006年以来我国二氧化硫年排放量与年份负相关,D选项错误,故选D.思维升华判定两个变量正,负相关性的方法6(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.(2)相关系数:当r0时,正相关;当r0时,负相关.(3)线性回归方程中:当b^0时,正相关;当b^0时,负相关.跟踪训练1(1)在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=-12x+1上,则这组样本数据的样本相关系数为()A.-1B.0C.-12D.1答案A解析完全的线性关系,且为负相关,故其相关系数为-1,故选A.(2)x和y的散点图如图所示,则下列说法中所有正确命题的序号为________.①x,y是负相关关系;②在该相关关系中,若用y=21ecxc拟合时的相关指数为R21,用y^=b^x+a^拟合时的相关指数为R22,则R21R22;③x,y之间不能建立线性回归方程.答案①②解析在散点图中,点散布在从左上角到右下角的区域,因此x,y是负相关关系,故①正确;由散点图知用y=21ecxc拟合比用y^=b^x+a^拟合效果要好,则R21R22,故②正确;x,y之间可以建立线性回归方程,但拟合效果不好,故③错误.题型二回归分析命题点1线性回归分析例2下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.7注:年份代码1~7分别对应年份2011~2017.(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量.附注:参考数据:i=17yi=9.32,i=17tiyi=40.17,i=17yi-y2=0.55,7≈2.646.参考公式:相关系数r=i=1nti-tyi-yi=1nti-t2i=1nyi-y2,回归方程y^=a^+b^t中斜率和截距的最小二乘估计公式分别为:b^=i=1nti-tyi-yi=1nti-t2,a^=y-b^t.解(1)由折线图中数据和附注中参考数据得t=4,i=17(ti-t)2=28,i=17yi-y2=0.55.i=17(ti-t)(yi-y)=i=17tiyi-ti=17yi=40.17-4×9.32=2.89,所以r≈2.890.55×2×2.646≈0.99.因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系.(2)由y=9.327≈1.331及(1)得b^=i=17ti-tyi-yi=17ti-t2=2.8928≈0.10,8a^=y-b^t≈1.331-0.10×4≈0.93.所以y关于t的回归方程为y^=0.93+0.10t.将2019年对应的t=9代入回归方程得y^=0.93+0.10×9=1.83.所以预测2019年我国生活垃圾无害化处理量约为1.83亿吨.命题点2非线性回归例3某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xywi=18(xi-x)2i=18(wi-w)2i=18(xi-x)·(yi-y)i=18(wi-w)·(yi-y)46.65636.8289.81.61469108.8表中wi=xi,w=18i=18wi.(1)根据散点图判断,y=a+bx与y=c+dx哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:①年宣传费x=49时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v^=α^+β^u的斜率和截距的最小二乘估计分别为β^=i=1nui-uvi-vi=1nui-u2,α^=v-β^u.9解
本文标题:(鲁京津琼专用)2020版高考数学大一轮复习 第十一章 统计与统计案例 11.3 变量间的相关关系、
链接地址:https://www.777doc.com/doc-8466316 .html