您好,欢迎访问三七文档
1第1课时等差、等比数列与数列求和题型一等差数列、等比数列的交汇例1记Sn为等比数列{an}的前n项和.已知S2=2,S3=-6.(1)求{an}的通项公式;(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.解(1)设{an}的公比为q.由题设可得a11+q=2,a11+q+q2=-6.解得q=-2,a1=-2.故{an}的通项公式为an=(-2)n.(2)由(1)可得Sn=a11-qn1-q=-23+(-1)n2n+13.由于Sn+2+Sn+1=-43+(-1)n2n+3-2n+23=2-23+-1n2n+13=2Sn,故Sn+1,Sn,Sn+2成等差数列.思维升华等差与等比数列的基本量之间的关系,利用方程思想和通项公式、前n项和公式求解.求解时,应“瞄准目标”,灵活应用数列的有关性质,简化运算过程.跟踪训练1(2019·桂林模拟)已知公差不为0的等差数列{an}的前n项和为Sn,S1+1,S3,S4成等差数列,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式;(2)若S4,S6,Sn成等比数列,求n及此等比数列的公比.解(1)设数列{an}的公差为d.由题意可知2S3=S1+1+S4,a22=a1a5,d≠0,整理得a1=1,d=2a1,即a1=1,d=2,∴an=2n-1.2(2)由(1)知an=2n-1,∴Sn=n2,∴S4=16,S6=36,又S4Sn=S26,∴n2=36216=81,∴n=9,公比q=S6S4=94.题型二数列的求和命题点1分组求和与并项求和例2(2018·吉大附中模拟)已知数列{an}是各项均为正数的等比数列,且a1+a2=21a1+1a2,a3+a4=321a3+1a4.(1)求数列{an}的通项公式;(2)设bn=a2n+log2an,求数列{bn}的前n项和Tn.解(1)设等比数列{an}的公比为q(q0),则an=a1qn-1,且an0,由已知得a1+a1q=21a1+1a1q,a1q2+a1q3=321a1q2+1a1q3,化简得a21qq+1=2q+1,a21q5q+1=32q+1,即a21q=2,a21q5=32,又∵a10,q0,∴a1=1,q=2,∴数列{an}的通项公式为an=2n-1.(2)由(1)知bn=a2n+log2an=4n-1+n-1,∴Tn=(1+4+42+…+4n-1)+(0+1+2+3+…+n-1)=4n-14-1+nn-12=4n-13+nn-12.命题点2错位相减法求和例3(2018·大连模拟)已知数列{an}满足an≠0,a1=13,an-an+1=2anan+1,n∈N*.(1)求证:1an是等差数列,并求出数列{an}的通项公式;(2)若数列{bn}满足bn=2nan,求数列{bn}的前n项和Tn.3解(1)由已知可得,1an+1-1an=2,∴1an是首项为3,公差为2的等差数列,∴1an=3+2(n-1)=2n+1,∴an=12n+1.(2)由(1)知bn=(2n+1)2n,∴Tn=3×2+5×22+7×23+…+(2n-1)2n-1+(2n+1)2n,2Tn=3×22+5×23+7×24+…+(2n-1)2n+(2n+1)·2n+1,两式相减得,-Tn=6+2×22+2×23+…+2×2n-(2n+1)2n+1.=6+8-2×2n×21-2-(2n+1)2n+1=-2-(2n-1)2n+1,∴Tn=2+(2n-1)2n+1.命题点3裂项相消法求和例4在数列{an}中,a1=4,nan+1-(n+1)an=2n2+2n.(1)求证:数列ann是等差数列;(2)求数列1an的前n项和Sn.(1)证明nan+1-(n+1)an=2n2+2n的两边同时除以n(n+1),得an+1n+1-ann=2(n∈N*),所以数列ann是首项为4,公差为2的等差数列.(2)解由(1),得ann=2n+2,所以an=2n2+2n,故1an=12n2+2n=12·n+1-nnn+1=12·1n-1n+1,所以Sn=121-12+12-13+…+1n-1n+1=121-1n+1=n2n+1.思维升华(1)一般求数列的通项往往要构造数列,此时可从要证的结论出发,这是很重要的解题信息.(2)根据数列的特点选择合适的求和方法,常用的求和方法有错位相减法、分组转化法、裂项相消法等.4跟踪训练2(1)已知数列{an}的前n项和为Sn,且a1=12,an+1=n+12nan(n∈N*).①证明:数列ann是等比数列;②求数列{an}的通项公式与前n项和Sn.①证明∵a1=12,an+1=n+12nan,当n∈N*时,ann≠0,又a11=12,an+1n+1∶ann=12(n∈N*)为常数,∴ann是以12为首项,12为公比的等比数列.②解由ann是以12为首项,12为公比的等比数列,得ann=12·12n-1,∴an=n·12n.∴Sn=1·12+2·122+3·123+…+n·12n,12Sn=1·122+2·123+…+(n-1)12n+n·12n+1,∴两式相减得12Sn=12+122+123+…+12n-n·12n+1=12-12n+11-12-n·12n+1,∴Sn=2-12n-1-n·12n=2-(n+2)·12n.综上,an=n·12n,Sn=2-(n+2)·12n.(2)(2018·三明质检)已知正项数列{an}的前n项和为Sn,a1=1,且(t+1)Sn=a2n+3an+2(t∈R).①求数列{an}的通项公式;②若数列{bn}满足b1=1,bn+1-bn=an+1,求数列12bn+7n的前n项和Tn.解①因为a1=1,且(t+1)Sn=a2n+3an+2,所以(t+1)S1=a21+3a1+2,所以t=5.所以6Sn=a2n+3an+2.(ⅰ)当n≥2时,有6Sn-1=a2n-1+3an-1+2,(ⅱ)5(ⅰ)-(ⅱ)得6an=a2n+3an-a2n-1-3an-1,所以(an+an-1)(an-an-1-3)=0,因为an0,所以an-an-1=3,又因为a1=1,所以{an}是首项a1=1,公差d=3的等差数列,所以an=3n-2(n∈N*).②因为bn+1-bn=an+1,b1=1,所以bn-bn-1=an(n≥2,n∈N*),所以当n≥2时,bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1=an+an-1+…+a2+b1=3n2-n2.又b1=1也适合上式,所以bn=3n2-n2(n∈N*).所以12bn+7n=13n2-n+7n=13·1nn+2=16·1n-1n+2,所以Tn=16·1-13+12-14+…+1n-1n+2=16·32-1n+1-1n+2,=3n2+5n12n+1n+2.1.已知等差数列{an}的前n项和为Sn,且a3=7,a5+a7=26.(1)求an及Sn;(2)令bn=Snn(n∈N*),求证:数列{bn}为等差数列.(1)解设等差数列{an}的首项为a1,公差为d,由题意有a1+2d=7,2a1+10d=26,6解得a1=3,d=2,则an=a1+(n-1)d=3+2(n-1)=2n+1,Sn=na1+an2=n[3+2n+1]2=n(n+2).(2)证明因为bn=Snn=nn+2n=n+2,又bn+1-bn=n+3-(n+2)=1,所以数列{bn}是首项为3,公差为1的等差数列.2.(2018·丰台模拟)在数列{an}和{bn}中,a1=1,an+1=an+2,b1=3,b2=7,等比数列{cn}满足cn=bn-an.(1)求数列{an}和{cn}的通项公式;(2)若b6=am,求m的值.解(1)因为an+1-an=2,且a1=1,所以数列{an}是首项为1,公差为2的等差数列.所以an=1+(n-1)·2=2n-1,即an=2n-1.因为b1=3,b2=7,且a1=1,a2=3,所以c1=b1-a1=2,c2=b2-a2=4.因为数列{cn}是等比数列,且数列{cn}的公比q=c2c1=2,所以cn=c1·qn-1=2×2n-1=2n,即cn=2n.(2)因为bn-an=2n,an=2n-1,所以bn=2n+2n-1.所以b6=26+2×6-1=75.令2m-1=75,得m=38.3.已知递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项.(1)求数列{an}的通项公式;(2)若bn=an12logan,Sn=b1+b2+…+bn,求使Sn+n·2n+162成立的正整数n的最小值.解(1)由题意,得a1q+a1q2+a1q3=28,a1q+a1q3=2a1q2+2,7解得a1=2,q=2或a1=32,q=12,∵{an}是递增数列,∴a1=2,q=2,∴数列{an}的通项公式为an=2·2n-1=2n.(2)∵bn=an12logan=2n·12log2n=-n·2n,∴Sn=b1+b2+…+bn=-(1×2+2×22+…+n·2n),①则2Sn=-(1×22+2×23+…+n·2n+1),②②-①,得Sn=(2+22+…+2n)-n·2n+1=2n+1-2-n·2n+1,则Sn+n·2n+1=2n+1-2,解2n+1-262,得n5,∴n的最小值为6.4.(2018·河北省唐山市迁安三中月考)正项等差数列{an}满足a1=4,且a2,a4+2,2a7-8成等比数列,{an}的前n项和为Sn.(1)求数列{an}的通项公式;(2)令bn=1Sn+2,求数列{bn}的前n项和Tn.解(1)设数列{an}的公差为d(d0),由已知得a2(2a7-8)=(a4+2)2,化简得,d2+4d-12=0,解得d=2或d=-6(舍),所以an=a1+(n-1)d=2n+2.(2)因为Sn=na1+an2=n2n+62=n2+3n,所以bn=1Sn+2=1n2+3n+2=1n+1n+2=1n+1-1n+2,所以Tn=b1+b2+b3+…+bn=12-13+13-14+14-15+…+1n+1-1n+2=12-1n+2=n2n+4.85.(2018·济南模拟)已知数列{an}的前n项和为Sn,a1=1,an0,S2n=a2n+1-λSn+1,其中λ为常数.(1)证明:Sn+1=2Sn+λ;(2)是否存在实数λ,使得数列{an}为等比数列,若存在,求出λ;若不存在,说明理由.(1)证明∵an+1=Sn+1-Sn,S2n=a2n+1-λSn+1,∴S2n=(Sn+1-Sn)2-λSn+1,∴Sn+1(Sn+1-2Sn-λ)=0,∵an0,∴Sn+10,∴Sn+1-2Sn-λ=0;∴Sn+1=2Sn+λ.(2)解存在λ=1,使得数列{an}为等比数列,理由如下:Sn+1=2Sn+λ,Sn=2Sn-1+λ(n≥2),相减得an+1=2an(n≥2),∴{an}从第二项起成等比数列,∵S2=2S1+λ,即a2+a1=2a1+λ,∴a2=1+λ0,得λ-1,∴an=1,n=1,λ+12n-2,n≥2,若使{an}是等比数列,则a1a3=a22,∴2(λ+
本文标题:(鲁京津琼专用)2020版高考数学大一轮复习 第六章 数列 高考专题突破三 高考中的数列问题(第1课
链接地址:https://www.777doc.com/doc-8466363 .html