您好,欢迎访问三七文档
1第2课时秦九韶算法与进位制学习目标1.了解秦九韶算法.2.了解生活中的各种进位制,了解计算机内部运算为什么选择二进制.3.会用除k取余法把十进制转换为各种进位制,并理解其中的数学规律.知识点一秦九韶算法1.求n次多项式的值的算法,有一种比较好的算法叫秦九韶算法.2.秦九韶算法的一般步骤:把一个n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0改写成如下形式:(…((anx+an-1)x+an-2)x+…+a1)x+a0,求多项式的值时,首先计算最内层括号内一次多项式的值,即v1=anx+an-1,然后由内向外逐层计算一次多项式的值,即v2=v1x+an-2,v3=v2x+an-3,…,vn=vn-1x+a0,这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.知识点二进位制若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式anan-1…a1a0(k)(an,an-1,…,a1,a0∈N,0ank,0≤an-1,…,a1,a0k).为了区分不同的进位制,常在数的右下角标明基数,如二进制数10(2),六进制数341(6),十进制数一般不标注基数.思考59分59秒再过1秒是多少时间?答案1小时.上述计时法遵循的是满60进一,称为六十进制.类比给出k进制的概念.“满k进一”就是k进制,k进制的基数是k.知识点三进制间的转化1.一般地,将k进制数anan-1…a1a0(k)转化为十进制:anan-1…a1a0(k)=an×kn+an-1×kn-1+…+a1×k1+a0×k0.2.把十进制的数化为k进制的数的方法是:把十进制数除以k,余数为k进制的右数第一位数.把商再除以k,余数为k进制右数第二位数;依次除以k,直至商为0.这个方法称为除k取余法.1.二进制数中可以出现数字3.(×)2.把十进制数转化成其它进制数的方法是除k取余法.(√)3.不同进制数之间可以相互转化.(√)2题型一秦九韶算法的应用例1用秦九韶算法求多项式f(x)=x5+5x4+10x3+10x2+5x+1当x=-2时的值.解f(x)=x5+5x4+10x3+10x2+5x+1=((((x+5)x+10)x+10)x+5)x+1.当x=-2时,有v0=1;v1=v0x+a4=1×(-2)+5=3;v2=v1x+a3=3×(-2)+10=4;v3=v2x+a2=4×(-2)+10=2;v4=v3x+a1=2×(-2)+5=1;v5=v4x+a0=1×(-2)+1=-1.故f(-2)=-1.反思感悟(1)先将多项式写成一次多项式的形式,然后运算时从里到外,一步一步地做乘法和加法即可.这样比直接将x=-2代入原式大大减少了计算量.若用计算机计算,则可提高运算效率.(2)注意:当多项式中n次项不存在时,可将第n次项看作0·xn.跟踪训练1用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64当x=2时的值.解根据秦九韶算法,把多项式改写成如下形式:f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64.由内向外依次计算一次多项式当x=2时的值:v0=1;v1=1×2-12=-10;v2=-10×2+60=40;v3=40×2-160=-80;v4=-80×2+240=80;v5=80×2-192=-32;v6=-32×2+64=0.所以当x=2时,多项式的值为0.题型二k进制化为十进制例2二进制数110011(2)化为十进制数是什么数?解110011(2)=1×25+1×24+0×23+0×22+1×21+1×20=32+16+2+1=51.反思感悟将k进制数anan-1…a1a0(k)化为十进制数的方法:把k进制数anan-1…a1a0(k)写成各3数位上的数字与基数k的幂的乘积之和的形式,然后计算出结果即为对应的十进制数.跟踪训练2(1)把二进制数1110011(2)化为十进制数.(2)将8进制数314706(8)化为十进制数.解(1)1110011(2)=1×26+1×25+1×24+0×23+0×22+1×21+1×20=115.(2)314706(8)=3×85+1×84+4×83+7×82+0×81+6×80=104902.所以,化为十进制数是104902.题型三十进制化k进制例3将十进制数458分别转化为四进制数和六进制数.解算式如图,则458=13022(4)=2042(6).反思感悟十进制数化为k进制数的思路为除k取余→倒序写出→标明基数.跟踪训练3把89化为二进制数.解算式如图,则89=1011001(2).秦九韶算法求多项式的值典例用秦九韶算法求多项式f(x)=x5+0.11x3-0.15x-0.04当x=0.3时的值.解将f(x)写为f(x)=((((x+0)·x+0.11)x+0)x-0.15)x-0.04.按从内到外的顺序,依次计算多项式的值:v0=1,v1=1×0.3+0=0.3,v2=0.3×0.3+0.11=0.2,v3=0.2×0.3+0=0.06,v4=0.06×0.3-0.15=-0.132,4v5=-0.132×0.3-0.04=-0.0796.∴当x=0.3时,f(x)的值为-0.0796.[素养评析](1)当多项式中出现空项时,利用秦九韶算法求多项式的值,必须补上系数为0的相应项.这是本题的易错点.(2)理解运算对象即求多项式的值,掌握运算法则即秦九韶算法,这些均是数学核心素养之数学运算的具体体现.1.已知175(r)=125(10),则r的值为()A.1B.5C.3D.8答案D解析∵1×r2+7×r1+5×r0=125,∴r2+7r-120=0,∴r=8或r=-15(舍去),∴r=8,故选D.2.用秦九韶算法计算多项式f(x)=6x6+5x5+4x4+3x3+2x2+x+7在x=0.4时的值时,需做加法和乘法的次数的和为()A.10B.9C.12D.8答案C解析f(x)=(((((6x+5)x+4)x+3)x+2)x+1)x+7,∴做加法6次,乘法6次,∴6+6=12(次),故选C.3.用秦九韶算法求多项式f(x)=x4+2x3+3x2+x+1当x=2时的值时,第一次运算的是()A.1×2B.24C.2+1D.1×2+2答案D解析因为f(x)=(((x+2)x+3)x+1)x+1,据由内到外的运算规律可知先运算的是1×2+2.4.下列各数中,最小的数是()A.85(9)B.210(6)C.1000(4)D.111111(2)答案D解析85(9)=8×9+5=77,210(6)=2×62+1×6+0=78,51000(4)=1×43=64,111111(2)=1×25+1×24+1×23+1×22+1×2+1=63.故最小的是63.5.(1)将二进制数1611111个转化成十进制数;(2)将53(8)转化为二进制数.解(1)1611111个(2)=1×215+1×214+…+1×21+1×20=216-1.(2)先将八进制数53(8)转化为十进制数:53(8)=5×81+3×80=43;再将十进制数43转化为二进制数的算法如图.所以53(8)=101011(2).1.要把k进制数化为十进制数,首先把k进制数表示成不同位上数字与k的幂的乘积之和,其次按照十进制的运算规则计算和.2.十进制数化为k进制数(除k取余法)的步骤:3.用秦九韶算法求多项式f(x)当x=x0时的值的思路为(1)改写;(2)计算v0=an,vk=vk-1x0+an-kk=1,2,…,n;(3)结论f(x0)=vn.一、选择题1.下列各数可能是五进制数的是()6A.55B.106C.732D.2134答案D解析五进制数的基数是5,在所构成的数中,只可能用0,1,2,3,4这5个数字.2.把五进制数123(5)改写成十进制数为()A.83B.64C.38D.44答案C解析五进制数123(5)改写成十进制数应为1×52+2×51+3×50=38.3.用秦九韶算法计算多项式f(x)=2x6+5x5+6x4+23x3-8x2+10x-3当x=-4时的值时,v3的值为()A.-742B.-49C.18D.188答案B解析f(x)=2x6+5x5+6x4+23x3-8x2+10x-3=(((((2x+5)x+6)x+23)x-8)x+10)x-3,v0=2,v1=v0x+5=2×(-4)+5=-3,v2=v1x+6=-3×(-4)+6=18,v3=v2x+23=18×(-4)+23=-49,故选B.4.两个二进制数101(2)与110(2)的和用十进制数表示为()A.12B.11C.10D.9答案B解析101(2)=1×22+0×21+1×20=5,110(2)=1×22+1×21+0×20=6.即和为5+6=11.5.四位二进制数能表示的最大十进制数是()A.4B.64C.255D.15答案D解析由二进制数化为十进制数的过程可知,当四位二进制数为1111时表示的十进制数最大,此时,1111(2)=15.6.已知44(k)=36,把67(k)转化为十进制数为()A.8B.55C.56D.62答案B解析由题意得,36=4×k1+4×k0,所以k=8.则67(k)=67(8)=6×81+7×80=55.7.用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4当x=-1时的值时,v2的结果是()A.-4B.-17C.5D.6答案D解析此题的n=4,a4=2,a3=-3,a2=1,a1=2,a0=1,由秦九韶算法的递推关系式v0=an,vk=vk-1x+an-kk=1,2,…,n,得v1=v0x+a3=2×(-1)-3=-5,v2=v1x+a2=-5×(-1)+1=6,故选D.8.已知一个k进制的数132与十进制的数30相等,那么k等于()A.7或4B.-7C.4D.-4答案C解析132(k)=1×k2+3×k+2=k2+3k+2,∴k2+3k+2=30,即k2+3k-28=0,解得k=4或k=-7(舍去).9.下列四个数最大的是()A.322(7)B.402(6)C.342(7)D.355(6)答案C解析342(7)=3×72+4×7+2=177,402(6)=4×62+0×6+2=146.所以342(7)>402(6).而342(7)>322(7),402(6)>355(6),所以最大的数是342(7).二、填空题10.若146(x)=66,则x的值为________.答案6解析146(x)=1×x2+4×x+6×x0=66.可得x=6(负值舍去).11.用秦九韶算法求多项式f(x)=2+0.35x+1.8x2-3x3+6x4-5x5+x6当x=-1时的值时,令v0=a6,v1=v0x+a5,…,v6=v5x+a0,则v3的值是________.答案-15解析f(x)=x6-5x5+6x4-3x3+1.8x2+0.35x+2=(((((x-5)x+6)x-3)x+1.8)x+0.35)x+2,所以v0=1,v1=1×(-1)-5=-6,8v2=(-6)×(-1)+6=12,v3=12×(-1)-3=-15.三、解答题12.利用秦九韶算法求多项式f(x)=3x6+12x5+8x4-3.5x3+7.2x2+5x-13当x=6时的值,写出详细步骤.解∵f(x)=(((((3x+12)x+8)x-3.5)x+7.2)x+5)x-13,v0=3,v1=v0×6+12=30,v2=v1×6+8=188,v3=v2×6-3.5=1124.5,v4=v3×6+7.2=6754.2,v5=v4×6+5=40530.2,v6=v5×6-13=243168.2,∴f(6)=243168.2.13.十六进制数与十进制数的对应如表:十六进制数012345678910ABCDE十进制数0123456789101112131415例如:A+B=11+12=16+7=1×16+7=17(16),所以A+B的值用十六进制表示就等
本文标题:2020版高中数学 第一章 算法初步 1.3 算法案例 第2课时 秦九韶算法与进位制学案(含解析)新
链接地址:https://www.777doc.com/doc-8466501 .html