您好,欢迎访问三七文档
1第2课时函数y=Asin(ωx+φ)的图象(二)1.函数y=13sin13x+π6的周期、振幅、初相分别是()A.3π,13,π6B.6π,13,π6C.3π,3,-π6D.6π,3,π6[解析]周期T=2π13=6π,振幅为13,初相为π6.[答案]B2.函数y=Asin(ωx+φ)+1(A0,ω0)的最大值为5,则A=()A.5B.-5C.4D.-4[解析]∵A0,∴函数最大值A+1=5,∴A=4.[答案]C3.函数f(x)=sin(ωx+φ)ω0,-π2φπ2的部分图象如图所示,则φ的值为()A.-π3B.π3C.-π6D.π6[解析]由图象知T=2πω=2π6+π3=π,所以ω=2,2×π6+φ=2kπ(k∈Z),又因为-π2φπ2,所以φ=-π3.故选A.2[答案]A4.如图所示为函数y=Asin(ωx+φ)A0,ω0,0|φ|π2的图象的一部分,则函数的一个解析式为()A.y=2sin1011x+π6B.y=2sin1011x-π6C.y=2sin2x+π6D.y=2sin2x-π6[解析]由图象知A=2,T2=2π3-π6=π2,∴T=π=2πω,∴ω=2,∵图象过π6,2,∴2=2sin2×π6+φ,∴sinπ3+φ=1,∴π3+φ=π2+2kπ,k∈Z,∴φ=π6+2kπ,k∈Z,又∵0|φ|π2,∴φ=π6.∴函数解析式y=2sin2x+π6.[答案]C5.函数f(x)=sinx-π4的图象的对称轴方程是_______________.[解析]∵x-π4=π2+kπ,k∈Z,∴x=3π4+kπ,k∈Z.3[答案]x=kπ+3π4,k∈Z
本文标题:2019-2020学年新教材高中数学 第五章 三角函数 5.6.2 函数y=Asin(ωx+φ)的图
链接地址:https://www.777doc.com/doc-8480691 .html