您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2019-2020学年新教材高中数学 课后作业42 诱导公式五、六 新人教A版必修第一册
1课后作业(四十二)复习巩固一、选择题1.下列各式中,不正确的是()A.sin(180°-α)=sinαB.cos180°+α2=sinα2C.cos3π2-α=-sinαD.tan(-α)=-tanα[解析]由诱导公式知A、D正确.cos32π-α=cosπ+π2-α=-cosπ2-α=-sinα,故C正确.cos180°+α2=cos90°+α2=-sinα2,故B不正确.[答案]B2.若sinπ2+θ0,且cosπ2-θ0,则θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角[解析]由于sinπ2+θ=cosθ0,cosπ2-θ=sinθ0,所以角θ的终边落在第二象限,故选B.[答案]B3.若sin(3π+α)=-12,则cos7π2-α等于()A.-12B.12C.32D.-322[解析]因为sin(3π+α)=-sinα=-12,所以sinα=12,所以cos7π2-α=cos3π2-α=-cosπ2-α=-sinα=-12.[答案]A4.已知cos31°=m,则sin239°tan149°的值是()A.1-m2mB.1-m2C.-1-m2mD.-1-m2[解析]sin239°tan149°=sin(180°+59°)·tan(180°-31°)=-sin59°(-tan31°)=-sin(90°-31°)·(-tan31°)=-cos31°·(-tan31°)=sin31°=1-cos231°=1-m2.[答案]B5.sin2π-α·cosπ3+2αcosπ-αtanα-3πsinπ2+αsin7π6-2α等于()A.-cosαB.cosαC.sinαD.-sinα[解析]原式=sin-α·cosπ3+2α·-cosαtanα·cosα·sin32π-π3+2α=sinαcosα·cosπ3+2αtanαcosα-cosπ3+2α=-cosα.故选A.[答案]A二、填空题6.化简sin400°sin-230°cos850°tan-50°的结果为________.[解析]sin400°sin-230°cos850°tan-50°=sin360°+40°[-sin180°+50°]cos720°+90°+40°-tan50°=sin40°sin50°sin40°tan50°3=sin50°sin50°cos50°=cos50°.[答案]cos50°7.已知cosα=13,则sinα-π2·cos3π2+αtan(π-α)=________.[解析]sinα-π2cos3π2+αtan(π-α)=-cosαsinα(-tanα)=sin2α=1-cos2α=1-132=89.[答案]898.若sinα+π12=13,则cosα+7π12=________.[解析]cosα+7π12=cosπ2+π12+α=-sinπ12+α=-13.[答案]-13三、解答题9.求证:cosπ-θcosθsin3π2-θ-1+cos2π-θcosπ+θsinπ2+θ-sin3π2+θ=2sin2θ.[证明]左边=-cosθcosθ-cosθ-1+cosθ-cosθcosθ+cosθ=11+cosθ+11-cosθ=1-cosθ+1+cosθ1+cosθ1-cosθ=21-cos2θ=2sin2θ=右边.∴原式成立.10.已知sinα是方程5x2-7x-6=0的根,且α是第三象限角,求sin-α-3π2cos3π2-αcosπ2-αsinπ2+α·tan2(π-α)的值.4[解]原式=-sinπ+π2+αcosπ+π2-αsinαcosα·tan2α=-sinπ2+αcosπ2-αsinαcosα·tan2α=-cosαsinαsinαcosα·tan2α=-tan2α.方程5x2-7x-6=0的两根为x1=-35,x2=2,又α是第三象限角,∴sinα=-35,cosα=-45,∴tanα=34,故原式=-tan2α=-916.综合运用11.计算sin21°+sin22°+sin23°+…+sin289°=()A.89B.90C.892D.45[解析]∵sin21°+sin289°=sin21°+cos21°=1,sin22°+sin288°=sin22°+cos22°=1,…∴sin21°+sin22°+sin23°+…+sin289°=sin21°+sin22°+sin23°+…+sin244°+sin245°+cos244°+cos243°+…+cos23°+cos22°+cos21°=44+12=892.[答案]C12.在△ABC中,3sinπ2-A=3sin(π-A),且cosA=-3cos(π-B),则C=________.[解析]由题意得3cosA=3sinA,①cosA=3cosB,②由①得tanA=33,故A=π6.由②得cosB=cosπ63=12,故B=π3.故C=π2.[答案]π213.已知f(α)=cosπ2+αsin3π2-αcos-π-αtanπ-α,则f-253π的值为________.5[解析]∵f(α)=-sinα-cosα-cosα-tanα=cosα,∴f-253π=cos-253π=cos253π=cos8π+π3=cosπ3=12.[答案]1214.若f(cosx)=cos2x,则f(sin15°)=________.[解析]f(sin15°)=f(cos75°)=cos150°=-cos30°=-32.[答案]-3215.已知cos(15°+α)=35,α为锐角,求tan435°-α+sinα-165°cos195°+α·sin105°+α的值.[解]原式=tan360°+75°-α-sinα+15°cos180°+15°+α·sin[180°+α-75°]=tan75°-α-sinα+15°-cos15°+α·[-sinα-75°]=-1cos15°+α·sin15°+α+sinα+15°cos15°+α·cos15°+α.因为α为锐角,所以0°α90°,所以15°α+15°105°.又cos(15°+α)=35,所以sin(15°+α)=45,故原式=-135×45+4535×35=536.
本文标题:2019-2020学年新教材高中数学 课后作业42 诱导公式五、六 新人教A版必修第一册
链接地址:https://www.777doc.com/doc-8480781 .html