您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 总结/报告 > 工程问题专题教案模板
工程问题专题教案模板第一篇范文:工程问题教案工程问题教案教材简析:工程问题应用是分数应用题中的一个特例。它的数量关系和解题思路与整数工程应用题基本相同。本节教学,主要是用整数工程应用题引入,让学生根据具体数量解答,然后把工作总量抽象成一个整体,用单位“1”表示。通过教学,使学生理解工程问题的实际意义,掌握它的解题方法,培养学生的分析,对比能力和综合、概括能力,提高他们的解题能力,发展他们的智力。教学目标1.理解工程问题的数量关系,掌握工程问题的特征,分析思路及解题的方法.2.能正确熟练地解答这类应用题.3.培养学生运用所学到知识解决生活中的实际问题.教学重点理解工程问题的数量关系和题目特点,掌握分析、解答方法.教学目标:1、让学生经历用“假设法”解决分数工程问题的过程,理解并掌握把工作总量看作单位“1”的分数工程应用题的基本特点、解题思路和解题方法。2、通过自主探究,评价交流的学习活动,培养学生分析、比较、综合、概括的能力。教学重点和难点:能知道把工作总量看作单位“1”,掌握工程问题应用题的数量关系。教学过程:一、复习旧知,情景引入师:今天,我们将继续解决生活中的数学问题。先让我们看一个修路队修路的情况。出示:有一个修路队修路的情况:(1)修一条300米的公路,甲队修10周完成,平均每周修多少米?(2)修一条300米的公路,甲队每周修30米,多少周能完成?师:默读题目,并在练习本上列式计算。指名口答,提问:你是根据什么数量关系列式的?根据回答,教师板书:工作总量÷工作效率=工作时间追问:要求工作时间,需要知道什么?(工作总量和工作效率)图片引入:为了建设新农村,各地都在进行乡村公路的建设。王庄村也准备新修一条公路。现在有2个工程队准备应聘参加这条公路的建设。(出示课件)他们单独修完这条公路所用的时间是甲队10周完成,乙队要15周完成。师:如果让你选择工程队,你怎样选择?还可以怎么选择?学生可能会回答,甲,也可能选择乙,合修。(对学生的选择作追问,为什么选择甲)根据学生的回答,老师引入:为了加快工程进度,王庒村选择了两队合作的方式进行。二、探究新知1、出示例题,分析题目信息:王庄村要修一条公路,甲队10周完成,乙队15周完成。如果两队同时从公路两端修,几周可以完成?师:(观察题目,要求合修的时间,需要知道什么?(教师指着数量关系生:需要知道工作总量和工作效率。师:可这里工作总量,也就是公路全长并没有告诉我们?我们可以怎么解决?预设:如果学生说单位1,教师肯定他的想法,师:还可以假设公路全长是多少?(预设:如果单位不太合适,说明修公路,这里用千米更好一些。)根据学生的回答,老师板书:300米,150米,60米,30米,1等。师:现在,你们假设了这么多数据。那好,就用你选择一个公路的全长试一试解决这道题吧。2、辨析各种解法。(1)学生用假设法解决,老师巡视,发现学生的各种方法,并抽不同假设的同学板书自己的方法。(2)小组交流:和小组同学交流一下你的方法,看看其他同学的方法能给你什么启示?(3)全班展示并评价各种方法,让学生说说自己解决的思路与方法。预设:A:假设全长300米,300÷(300÷15+300÷10)=6(周)B:假设全长150米,150÷(150÷15+150÷10)=6(周)C:假设全长60米60÷(60÷15+60÷10)=6(周D:假设全长为单位1,1÷(1/15+1/10)=6周师:黑板上有是几个同学的解法,我们来听听他们解决的思路是什么。对于假设具体的数据的解法,重点分析第一种,让学生说出具体的数量关系。(如果学生说不太清楚,指导说甲队的工效,乙队的工效,怎样求的合修的时间。)师:哪些同学是假设的300米的,假设60米的呢举手看一看对用分率进行解的方法,老师作重点追问,他的想法跟大家不一样,让他自己说说想法。提问:这里的1指什么,1/10,1/15指什么,1/10+1/15各代表什么?为何用1÷?请学生结合工作总量,工作效率与工作时间的关系说说。(同桌说说这种解法的思路)对有同学用1÷10=1/10,说明根据分数与除法的关系,1/10就能表示出1÷10的关系。今后遇到这种情况,可以直接写1/10。3、分析工程问题的特点评价:除了假设300米,60米和单位1的,其他同学你假设的多少,得到的结果又是多少呢?引发思考:不知道你们发现没有,你们各自假设的公路全长不同,但答案都是6周,为什么呢?先让学生独立思考,再和小组同学进行讨论。全班交流:你有些什么发现,与全班同学交流一下。预设:公路全长增加,两个队每天修的米数也在增加,因此,结果都是6周。运用了除法中商不变的规律。公路全长与两个队单独修的时间的比是不变的。如果说因为他们每个队的工效在变化,就追问,工效在变化,但他们所修的公路全长也在变化。两个队每天修的占全长的几分之几没变,(用前面的数据验证这一说法。)引导小结:他们单独修的时间不变,无论假设公路全长是多少,两个队每天修的始终占全长的1/10和1/15。对这条公路的全长而言,他们每天修路的米数在变化,但他们每天修这条路的几分之几没有变。比较这几种解法,哪种解法更简便一些?4、即时练习象合修一段路的问题,在工作中会经常遇到。大家看出示:一件工作,甲要4小时完成,乙要时6小完成。如果两人合作,几小时可以完成这件工作?学生独立完成,集体订正时,说说自己的解题思路。5、揭示课题像这样的如:做一项工作、修一条公路这样的做工问题我们把它叫做“工程问题”(板书课题)。齐读课题6、小结反思:仔细观察今天,我们解决的工程问题,你觉得有什么特点?可以怎样解决?根据全班的讨论,得出解决工程问题可以用假设法,利用具体的数量关系进行解决,也可利用分数方法进行解决。三、巩固反馈,同类拓展。1、完成课堂活动,第2题。(将两道题放在一起)学生独立完成,集体订正。展示学生用具体数量和用分数方法解决的方法。比较两种方法的特点。根据交流,强调:相遇问题也可根据工程问题的思考方法进行解决。2、同类拓展。一批布,可单独做上衣20件,单独做裤子可做30件。如果将上衣和裤子配套做,可做多少套?(1)(20+30)÷2(2)300÷(300÷20+300÷30)(3)1÷(1/20+1/30)(4)300÷(1/20+1/30)重点指导错误原因。学生选择后,说说学生选择的理由。及思路。老师小结练习情况:数学的许多知识是相通的。就象工程问题的思考方法就可以帮助我们解决其他许多类似的数学问题。3\\\\提升,补充1、回到例题。刚才,我们仔细研究了例题,发现有许多合作的方案。老师出示各种合作方案,学生只列式,不计算。(1)如果甲,乙两队合作两周,修这条公路的几分之几?(2)甲,乙两队合作几周,就可以完成这条公路的2/3?(3)如果丙队30周完成,现在三个队一起合作,几周可以修完这条公路?,并独立列式不计算,全班展示,反馈。五、小结说说今天你的收获?延伸:今天,我们在工作总量也就是公路全长不知道的情况下,通过假设的公路全长,很好的解决了工程问题,如果,我们假设甲队或乙队的工作效率,得出的时间会不会和我们今天得出的结果一样呢?同学们下来可以试一试,也可以看看书上第90页上的内容。第二篇范文:工程问题教案教学内容:第十一册79页例9(第一教时)教学目的:1.使学生认识工程问题的结构特点,掌握它的数量关系、解题思路和解题方法,并能正确地解答工程问题的基本题。2.培养学生解题的迁移能力,以及数学思维能力。教学准备:投影片若干张教学过程:一、导入:今天,老师让每位同学当公司经理,看哪位经理最精明。出示:假如你是某工程队的经理,要修一段路,现有甲、乙两个工程队,甲队单独修10天完成,乙队单独修15天完成。你想承包给哪个队?为什么?(学生分组讨论,派代表发言)生1:给甲队做,因为他完工时间比乙队少,„„师:仅考虑时间少行吗?生2:给乙队做,虽然他时间较长,可能修路质量好,„„师:有没有更好的方案呢?生3:由甲乙两队合做,完工时间更短,可让两队优势互补,„„师:若甲乙两队合做,猜猜看,大约需要几天完工?生1:小于10天,但大于5天。生2:6天,可假设一段路长120千米,„„师:我们不妨计算一下,具体是几天?[从实际事例入手,学生成为“经理”,突出了学习的主动性。选择的素材紧密联系本课时的内容,学生在探讨解决问题的同时,兴趣盎然地进入学习新知的准备状态。]二、教学例91.出示例9:一段公路长30千米(60千米)[用黑卡纸盖住],甲队单独修10天完成,乙队单独修15天完成,两队合修几天修完?师:各位“经理”算一算,几天完成呢?[同学们议论纷纷,跃跃欲势,都想当个精明的“经理”。]学生汇报计算的方法:30÷(30÷10+30÷15)=6(天)(板书)师:请你说说每步计算的含义。教师依次对应板书“甲的工效”“乙的工效”“工作总量”“合做时间”并小结数量关系式:工作总量÷工作效率和=合做时间师:如果把30千米改成60千米,其他条件不变,合做时间是多少呢?(揭去黑卡纸)[同学们思考片刻,纷纷举手]生:60÷(60÷10+60÷15)=6(天)(板书)师:仔细比较这两道题,你发现了什么?生1:合做时间都是6天。生2:无论公路长多少,只要各自单独做的时间不变,合做时间不变。师:是这样吗?同学们用不同的公路长度试一试。[学生为了得到证实,即刻得出了结论。学生有了展现自我的机会,同时启发了学生探索数学奥秘的方法。]师板书省略号师:为什么会这样呢?生1:工作总量扩大了,工作效率也在扩大,而且扩大的倍数相同,所以时间不变„„生2:无论公路长多少,甲乙两队每天修的各自占总长的几分之几没变,„„师:(擦去30千米和60千米)如果没有具体的公路长度,这题还能解答吗?[学生陷入了沉思]可以把这段路看作什么?[学生立即恍然大悟]生:把这段公路看成单位“1”。师:甲乙的工作效率又如何表示呢?生:1/10,1/15师:同学们算一算,合做时间是几天呢?学生列出算式:1÷(1/10+1/15)=6(天)(板书)2.师:这就是我们今天学习的新知识“工程问题”(板书课题)师:你觉得工程问题有哪些特点呢?生1:把工作总量看成单位“1”„„生2:工作效率用时间的倒数表示。三、练习1.投影出示:教材第80页练习二十第1题。指名学生回答。2.导入部分加一个条件,假如现有三个工程队,丙单独修需12天完成,想一想经理安排合做的方式有几种?每种合做方式各需几天?(只列式,不计算)(有4种,分别是甲乙合做,甲丙合做,乙丙合做,三队合做)哪种合做方式时间最少呢?请你把他们从时间少到时间多排列一下。(不计算)[本题既巩固了新知,又渗透了简单的排列组合问题,同时让学生领悟工效与所用时间的关系。]3.如果仅修这段路的一半,那么这几种合做方式各需几天呢?四、应用工程问题的解题方法,在生活中有着广泛的应用。1.投影出示:有一批布,如果只做西服的上衣可做20件,只做西服的裤子可做30条,请你算一算,这批布可以做几套这样的西服?[本题的意图是学生能运用类比的数学方法解。即看成例9]2.你还能想到类似的问题吗?[课后教感:整个教学环节努力渗透了数学课程标准的思想,立足数学要生活化,倡导学生为主体等,创设了解决实际问题的情境,让学生充分展现自我。学习数学的实际应用要比学纯数学知识有价值。]第三篇范文:工程问题教案工程问题教案教学目标:1、让学生经历用“假设法”解决分数工程问题的过程,理解并掌握把工作总量看作单位“1”的分数工程应用题的基本特点、解题思路和解题方法。2、通过自主探究,评价交流的学习活动,培养学生分析、比较、综合、概括的能力。教学重点和难点:能知道把工作总量看作单位“1”,掌握工程问题应用题的数量关系。教学过程:一、复习旧知,情景引入师:今天,我们将继续解决生活中的数学问题。先让我们看一个修路队修路的情况。出示:有一个修路队修路的情况:(1)修一条300米的公路,甲队修10周完成,平均每周修多少米?(2)修一条300米的公路,甲队每周修30米,多少周能完成?师:默读题目,并在练习本上列式计算。指名口答,提问:你是根据什么数量关系列式的
本文标题:工程问题专题教案模板
链接地址:https://www.777doc.com/doc-8497142 .html