您好,欢迎访问三七文档
欢迎阅读线性规划应用题1.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,求该企业可获得最大利润。解析:设甲、乙种两种产品各需生产x、y吨,可使利润z最大,故本题即已知约束条件001832133yxyxyx,求目标函数yxz35的最大值,可求出最优解为43yx,故271215maxz。2.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,求所需租赁费的最少值.【解析】:设甲种设备需要生产x天,乙种设备需要生产y天,该公司所需租赁费为z元,则200300zxy,甲、乙两种设备生产A,B两类产品的情况为下表所示:产品设备A类产品(件)(≥50)B类产品(件)(≥140)租赁费(元)甲设备510200乙设备620300则满足的关系为565010201400,0xyxyxy即:61052140,0xyxyxy,作出不等式表示的平面区域,当200300zxy对应的直线过两直线6105214xyxy的交点(4,5)时,目欢迎阅读标函数200300zxy取得最低为2300元.答案:23003.某人上午7时,乘摩托艇以匀速vnmile/h(4≤v≤20)从A港出发到距50nmile的B港去,然后乘汽车以匀速wkm/h(30≤w≤100)自B港向距300km的C市驶去新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆应该在同一天下午4至9点到达C市新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆设乘汽车、摩托艇去所需要的时间分别是xh、yh(1)作图表示满足上述条件的x、y范围;(2)如果已知所需的经费p=100+3×(5-x)+2×(8-y)(元),那么v、w分别是多少时走得最经济?此时需花费多少元?分析:由p=100+3×(5-x)+2×(8-y)可知影响花费的是3x+2y的取值范围解:(1)依题意得v=y50,w=x300,4≤v≤20,30≤w≤100∴3≤x≤10,25≤y≤225①由于乘汽车、摩托艇所需的时间和x+y应在9至14个小时之间,即9≤x+y≤14②因此,满足①②的点(x,y)的存在范围是图中阴影部分(包括边界)(2)∵p=100+3·(5-x)+2·(8-y),∴3x+2y=131-p设131-p=k,那么当k最大时,p最小新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆在通过图中的阴影部分区域(包括边界)且斜率为-23的直线3x+2y=k中,使k值最大的直线必通过点(10,4),即当x=10,y=4时,p最小此时,v=12新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆5,w=30,p的最小值为93元点评:线性规划问题首先要根据实际问题列出表达约束条件的不等式新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆然后分析要求量的几何意义4.某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:(表中单位:百元)资金单位产品所需资金月资金供应量空调机洗衣机成本3020300劳动力:工资510110单位利润68试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?解:设空调机、洗衣机的月供应量分别是x、y台,总利润是P,则P=6x+8y,由题意有30x+20y≤300,5x+10y≤110,x≥0,y≥0,x、y均为整数新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆由图知直线y=-43x+81P过M(4,9)时,纵截距最大新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆这时P也取最大值Pmax=6×4+8×9=96(百元)新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9600元新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆391014xO2.5914y欢迎阅读5.某矿山车队有4辆载重量为10t的甲型卡车和7辆载重量为6t的乙型卡车,有9名驾驶员新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆此车队每天至少要运360t矿石至冶炼厂新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?分析:弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆解:设每天派出甲型车x辆、乙型车y辆,车队所花成本费为z元,那么9106683604,7,xyxyxxNyyNz=252x+160y,作出不等式组所表示的平面区域,即可行域,如图新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆此时,z=252x+160y取得最小值,即x=2,y=5时,zmin=252×2+160×5=1304新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆解题回顾:用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆6.某校伙食长期以面粉和大米为主食,面食每100g含蛋白质6个单位,含淀粉4个单位,售价0新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆5元,米食每100g含蛋白质3个单位,含淀粉7个单位,售价0新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆4元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?解:设每盒盒饭需要面食x(百克),米食y(百克),所需费用为S=0新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com
本文标题:线性规划应用习题
链接地址:https://www.777doc.com/doc-8502219 .html