您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > PPT模板库 > 5.7-三角函数的应用-课件
人教2019A版必修第一册第五章三角函数5.7三角函数的应用1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型.学习目标提出问题现实生活中存在大量具有周而复始、循环往复特点的周期运动变化现象,如果某种变化着的现象具有周期性,那么就可以考虑借助三角函数来描述.本节通过几个具体实例,说明三角函数模型的简单应用.问题1某个弹簧振子(简称振子)在完成一次全振动的过程中,时间t(单位:s)与位移y(单位:mm)之间的对应数据如表5.7.1所示.试根据这些数据确定这个振子的位移关于时间的函数解析式.典例解析y=Asin(ωt+φ)现实生活中存在大量类似弹簧振子的运动,如钟摆的摆动,水中浮标的上下浮动,琴弦的振动等.物体在某一中心位置附近循环往复的运动.在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=Asin(ωx+φ),x∈[0,+∞)其中A>0,ω>0.描述简谐运动的物理量,如振幅、周期和频率等都与这个解析式中的常数有关:归纳总结1.如图所示的是一质点做简谐运动的图象,则下列结论正确的是()达标检测A.该质点的运动周期为0.7sB.该质点的振幅为5cmC.该质点在0.1s和0.5s时运动速度最大D.该质点在0.3s和0.7s时运动速度为零A.该质点的运动周期为0.7sB.该质点的振幅为5cmC.该质点在0.1s和0.5s时运动速度最大D.该质点在0.3s和0.7s时运动速度为零【解析】由题图可知,该质点的振幅为5cm.【答案】B2.与图中曲线对应的函数解析式是()A.y=|sinx|B.y=sin|x|C.y=-sin|x|D.y=-|sinx|【解析】注意题图所对的函数值正负,因此可排除选项A,D.当x∈(0,π)时,sin|x|0,而图中显然是小于零,因此排除选项B,故选C.【答案】C3.车流量被定义为单位时间内通过十字路口的车辆数,单位为辆/分,上班高峰期某十字路口的车流量由函数F(t)=50+4sint2(0≤t≤20)给出,F(t)的单位是辆/分,t的单位是分,则下列哪个时间段内车流量是增加的()A.[0,5]B.[5,10]C.[10,15]D.[15,20]【解析】当10≤t≤15时,有32π5≤t2≤15252π,此时F(t)=50+4sint2是增函数,即车流量在增加.故应选C.【答案】C4.在电流强度I与时间t的关系I=Asin(ωx+φ)(A0,ω0)中,要使t在任意1100秒的时间内电流强度I能取得最大值A与最小值-A,求正整数ω的最小值.【解】由题意得:T≤1100,即2πω≤1100,∴ω≥200π,∴正整数ω的最小值为629.5.某港口的水深y(m)是时间t(0≤t≤24,单位:h)的函数,下面是有关时间与水深的数据:t(h)03691215182124y(m)10.013.09.97.010.013.010.17.010.0根据上述数据描出的曲线如图所示,经拟合,该曲线可近似地看成正弦型函数y=Asinωt+b的图象.(1)试根据以上数据,求出y=Asinωt+b的表达式;(2)一般情况下,船舶航行时,船底离海底的距离不少于4.5m时是安全的,如果某船的吃水深度(船底与水面的距离)为7m,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,则在港内停留的时间最多不能超过多长时间(忽略进出港所用的时间)?【解】(1)从拟合曲线可知:函数y=Asinωt+b在一个周期内由最大变到最小需9-3=6(h),此为半个周期,∴函数的最小正周期为12h,因此2πω=12,ω=π6.又∵当t=0时,y=10;当t=3时,ymax=13,∴b=10,A=13-10=3,∴所求函数的表达式为y=3sinπ6t+10(0≤t≤24).(2)由于船的吃水深度为7m,船底与海底的距离不少于4.5m,故在船舶航行时,水深y应大于或等于7+4.5=11.5(m).令y=3sinπ6t+10≥11.5,可得sinπ6t≥12,∴2kπ+π6≤π6t≤2kπ+5π6(k∈Z),∴12k+1≤t≤12k+5(k∈Z).取k=0,则1≤t≤5,取k=1,则13≤t≤17;而取k=2时,25≤t≤29(不合题意,舍).从而可知船舶要在一天之内在港口停留时间最长,就应从凌晨1时(1时到5时都可以)进港,而下午的17时(即13时到17时之间)离港,在港内停留的时间最长为16h.解三角函数应用题的基本步骤:(1)审清题意;(2)搜集整理数据,建立数学模型;(3)讨论变量关系,求解数学模型;(4)检验,作出结论.课堂小结
本文标题:5.7-三角函数的应用-课件
链接地址:https://www.777doc.com/doc-8617615 .html