您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 交通运输 > 初中数学专题十 折叠问题(1)
第1页共9页初中数学专项突破专题十折叠问题(2017贵州安顺第7题)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cmB.7cmC.8cmD.9cm【答案】C.(2017江苏无锡第10题)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于(D)A.2B.54C.53D.75(2017新疆乌鲁木齐第9题)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为43且60,2AFGGEBG,则折痕EF的长为(C)A.1B.3C.2D.23(2017重庆A卷第18题)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.[来源:Zxxk.Com]第2页共9页(2017河南第15题)如图,在RtABC中,90A,ABAC,21BC,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠B,使点B的对应点'B始终落在边AC上.若'MBC为直角三角形,则BM的长为.【答案】1或212.(2017江苏苏州第18题)如图,在矩形CD中,将C绕点按逆时针方向旋转一定角度后,C的对应边C交CD边于点G.连接、CC,若D7,CG4,G,则CC(结果保留根号).【答案】745.(2017海南第17题)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.第3页共9页【答案】35.(2016·黑龙江齐齐哈尔·3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1.(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为3a(用含a的式子表示).(2016河南)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为或.(2017甘肃兰州第26题)如图,1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:BDF△是等腰三角形;(2)如图2,过点D作DGBE∥,交BC于点G,连结FG交BD于点O.第4页共9页①判断四边形BFDG的形状,并说明理由;②若6AB=,8AD=,求FG的长.【答案】(1)证明见解析;(2)152.【解析】试题分析:(1)根据两直线平行内错角相等及折叠特性判断;(2)①根据已知矩形性质及第一问证得邻边相等判断;②根据折叠特性设未知边,构造勾股定理列方程求解.试题解析:(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵FD∥BG,∴四边形BFDG是平行四边形,∵DF=BF,第5页共9页∴四边形BFDG是菱形;②∵AB=6,AD=8,∴BD=10.∴OB=12BD=5.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+A2=BF2,即62+(8﹣x)2=x2,解得x=254,即BF=254,∴FO=222522()54BFOB=154,∴FG=2FO=152.(2017浙江金华第23题)如图1,将ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰BED和等腰DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.[来源:学+科+网](1)将ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是第6页共9页线段_____,_____;:ABCDAEFGSS矩形______.[来源:学科网ZXXK](2)ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若5EF,12EH,求AD的长.(3)如图4,四边形ABCD纸片满足,,,8,10ADBCADBCABBCABCD.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出,ADBC的长.【答案】(1)(1)AE;GF;1:2;(2)13;(3)按图1的折法,则AD=1,BC=7;按图2的折法,则AD=134,BC=374.【解析】试题分析:(1)由图2观察可得出答案为AE,GF,由折叠的轴对称性质可得出答案为1:2;(2)由EF和EH的长度根据勾股定理可求出FH的长度,再由折叠的轴对称性质易证△AEH≌△CGF;再根据全等三角形的性质可得出AD的长度;(3)由折叠的图可分别求出AD和BC的长度.(3)解:本题有以下两种基本折法,如图1,图2所示.第7页共9页按图1的折法,则AD=1,BC=7.按图2的折法,则AD=134,BC=374.(2015年河南3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为▲.【答案】16或45.(2015年江苏泰州3分)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为▲.【答案】245.(2015湖北鄂州第8题3分)如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=()[来源:学科网]第8页共9页A.B.C.D.【答案】D.(2015•四川自贡,第10题4分)如图,在矩形ABCD中,AB4AD6,,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△'EBF,连接'BD‘,则'BD‘的最小值是(A)A.2102B.6C.2132D.4(2015•绵阳第12题,3分)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=(B)[来源:学*科*网]A.B.C.D.(2015•四川省内江市,第14题,5分)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.第9页共9页(2015•浙江滨州,第17题4分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.【答案】(10,3)
本文标题:初中数学专题十 折叠问题(1)
链接地址:https://www.777doc.com/doc-8635240 .html