您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 大学课件 > 二次函数的图像和性质2
二次函数图象和性质练习1:指出下面函数的开口方向,对称轴,顶点坐标,最值。1)y=2(x+3)2+52)y=4(x-3)2+73)y=-3(x-1)2-24)y=-5(x+2)2-6练习2:对称轴是直线x=-2的抛物线是()Ay=-2x2-2By=2x2-2Cy=-1/2(x+2)2-2Dy=-5(x-2)2-6C1.抛物线的顶点为(3,5)此抛物线的解析式可设为()Ay=a(x+3)2+5By=a(x-3)2+5Cy=a(x-3)2-5Dy=a(x+3)2-52.抛物线c1的解析式为y=2(x-1)2+3抛物线c2与抛物线c1关于x轴对称,请直接写出抛物线c2的解析式_____你答对了吗?1.B2.y=-2(x-1)2-33.的顶点坐标是,对称轴是.2325yx(-2,-5)直线x=-21.用配方法把2yaxbxc2yaxhk化为的形式。的形式,求出顶点坐标和对称轴。215322yxx2yaxhk例1用配方法把化为215322yxx解:顶点坐标为(-3,-2),对称轴为x=-321322x答案:,顶点坐标是(1,5),对称轴是直线x=1.的形式,求出顶点坐标和对称轴。2247yxx2yaxhk2215yx练习1用配方法把化为的方法和我们前面学过的用配方法解二次方程“”类似.具体演算如下:化为的形式。2.用公式法把抛物线2yaxbxc2yaxhk2yaxbxc2yaxhk把变形为20axbxc2yaxbxc24,24bacbaa2bxa所以抛物线的顶点坐标是,对称轴是直线。2yaxbxc22222bbbcaxxaaaa222424bacbaxaa22424bacbaxaa2bcaxxaa的形式,求出对称轴和顶点坐标.21522yxx2yaxhk例2用公式法把化为21522yxx15,1,22abc221541144221,2112422422bacbaa21122yx解:在中,,∴顶点为(1,-2),对称轴为直线x=1。的形式,并求出顶点坐标和对称轴。答案:,顶点坐标为(2,2)对称轴是直线x=22286yxx2yaxhk2222yx练习2用公式法把化成3.2yaxbxc图象的画法.2yaxbxc2yaxhk步骤:1.利用配方法或公式法把化为的形式。2.确定抛物线的开口方向、对称轴及顶点坐标。3.在对称轴的两侧以顶点为中心左右对称描点画图。的图像,利用函数图像回答:例3画出2286yxx(1)x取什么值时,y=0?(2)x取什么值时,y>0?(3)x取什么值时,y<0?(4)x取什么值时,y有最大值或最小值?分析:我们可以用顶点坐标公式求出图象的顶点,过顶点作平行于y轴的直线就是图象的对称轴.在对称轴的一侧再找两个点,则根据对称性很容易找出另两个点,这四个点连同顶点共五个点,过这五个点画出图像.(1)用顶点坐标公式,可求出顶点为(2,2),对称轴是x=2.(2)当x=1时,y=0,即图象与x轴交于点(1,0),根据轴对称,很容易知道(1,0)的轴对称点是点(3,0).又当x=0时,y=-6,即图象与y轴交于点(0,-6),根据轴对称,很容易知道(0,-6)的轴对称点是点(4,-6).用光滑曲线把五个点(2,2),(1,0),(3,0),(0,-6),(4,-6)连结起来,就是22860yxx的图象。解:列表xy22100-6304-6…………22860yxx(2,2)·····x=2(0,-6)(1,0)(3,0)(4,-6)2286yxx由图像知:(1)当x=1或x=3时,y=0;(2)当1<x<3时,y>0;(3)当x<1或x>3时,y<0;(4)当x=2时,y有最大值2。xy练习3画出222yxx的图像。x…-10123…y…52125…x=1y=x2-2x+2(3)开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。4.二次函数2yaxbxc的性质:(1)顶点坐标24,;24bacbaa(2)对称轴是直线2bxa2bxa24-,4acbya最小=2bxa24-;4acbya最大=如果a>0,当时,函数有最小值,如果a<0,当时,函数有最大值,(4)最值:2bxa2bxa2bxa2bxa①若a>0,当时,y随x的增大而增大;当时,y随x的增大而减小。②若a<0,当时,y随x的增大而减小;当时,y随x的增大而增大。(5)增减性:与y轴的交点坐标为(0,c)(6)抛物线2yaxbxc与坐标轴的交点①抛物线2yaxbxc2yaxbxc12,0,,0xx12,xx20axbxc②抛物线与x轴的交点坐标为,其中为方程的两实数根与x轴的交点情况可由对应的一元二次方程2yaxbxc20axbxc(7)抛物线的根的判别式判定:①△>0有两个交点抛物线与x轴相交;②△=0有一个交点抛物线与x轴相切;③△<0没有交点抛物线与x轴相离。例4已知抛物线247,yxkxk①k取何值时,抛物线经过原点;②k取何值时,抛物线顶点在y轴上;③k取何值时,抛物线顶点在x轴上;④k取何值时,抛物线顶点在坐标轴上。,所以k=-4,所以当k=-4时,抛物线顶点在y轴上。,所以k=-7,所以当k=-7时,抛物线经过原点;②抛物线顶点在y轴上,则顶点横坐标为0,即解:①抛物线经过原点,则当x=0时,y=0,所以200407kk40221kba,所以当k=2或k=-6时,抛物线顶点在x轴上。③抛物线顶点在x轴上,则顶点纵坐标为0,即③抛物线顶点在x轴上,则顶点纵坐标为0,即22417440441kkacba24120kk122,6kk,整理得,解得:④由②、③知,当k=-4或k=2或k=-6时,抛物线的顶点在坐标轴上。22417440441kkacba所以当x=2时,。解法一(配方法):2281yxx22277x7y最小值=-2241xx224441xx例5当x取何值时,二次函数有最大值或最小值,最大值或最小值是多少?2281yxx因为所以当x=2时,。因为a=2>0,抛物线有最低点,所以y有最小值,2281yxx224218842,7222442bacbaa-7y最小值=-总结:求二次函数最值,有两个方法.(1)用配方法;(2)用公式法.解法二(公式法):又例6已知函数,当x为何值时,函数值y随自变量的值的增大而减小。211322yxx解法一:,102a∴抛物线开口向下,21169922xx21913222x21352x∴对称轴是直线x=-3,当x>-3时,y随x的增大而减小。211322yxx102a331222ba解法二:,∴抛物线开口向下,∴对称轴是直线x=-3,当x>-3时,y随x的增大而减小。例7已知二次函数212321ymxmxmm的最大值是0,求此函数的解析式.解:此函数图象开口应向下,且顶点纵坐标的值为0.所以应满足以下的条件组.21041322041mmmmm,①②由②解方程得121,22mm不合题意,舍去所求函数解析式为21111232,222yxx。21122yxx即相等,则形状相同。(1)a决定抛物线形状及开口方向,若a①a>0开口向上;5.抛物线y=ax2+bx+c中a,b,c的作用。②a<0开口向下。5.抛物线y=ax2+bx+c中a,b,c的作用。(2)a和b共同决定抛物线对称轴的位置,由于抛物线y=ax2+bx+c的对称轴是直线2bxa③若a,b异号对称轴在y轴右侧。,故①若b=0对称轴为y轴,②若a,b同号对称轴在y轴左侧,5.抛物线y=ax2+bx+c中a,b,c的作用。(3)c的大小决定抛物线y=ax2+bx+c与y轴交点的位置。当x=0时,y=c,∴抛物线y=ax2+bx+c与y轴有且只有一个交点(0,c),①c=0抛物线经过原点;②c>0与y轴交于正半轴;③c<0与y轴交于负半轴。例8已知如图是二次函数y=ax2+bx+c的图象,判断以下各式的值是正值还是负值.(1)a;(2)b;(3)c;(4)b2-4ac;(5)2a+b;(6)a+b+c;(7)a-b+c.分析:已知的是几何关系(图形的位置、形状),需要求出的是数量关系,所以应发挥数形结合的作用.解:(1)因为抛物线开口向下,所以a<0;判断a的符号(2)因为对称轴在y轴右侧,所以02ba,而a<0,故b>0;判断b的符号(3)因为x=0时,y=c,即图象与y轴交点的坐标是(0,c),而图中这一点在y轴正半轴,即c>0;判断c的符号2404acba240acb240bac(4)因为顶点在第一象限,其纵坐标,且a<0,所以,故。判断b2-4ac的符号,且a<0,所以-b>2a,故2a+b<0;(5)因为顶点横坐标小于1,即12ba判断2a+b的符号(6)因为图象上的点的横坐标为1时,点的纵坐标为正值,即a·12+b·1+c>0,故a+b+c>0;判断a+b+c的符号(7)因为图象上的点的横坐标为-1时,点的纵坐标为负值,即a(-1)2+b(-1)+c<0,故a-b+c<0.判断a-b+c的符号
本文标题:二次函数的图像和性质2
链接地址:https://www.777doc.com/doc-8685528 .html