您好,欢迎访问三七文档
当前位置:首页 > 学术论文 > 其它学术论文 > 一种群体评价一致性合成方法赵海燕
200077 :1000-6788(2000)07-0052-06赵海燕,曹 健,张友良(CIMS,210094): ,,,.,.: ;;: N94 AnAggregatingMethodofGroupEvaluationBasedonConsensusDegreeZHAOHai-yan,CAOJian,ZHANGYou-liang(CIMSInstitute,NanjingUniversityofScience&Technology,Nanjing,210094)Abstract: Inthispaper,basedonusingtriangularfuzzynumbertorepresentevaluationopinion,anewmethodisproposedforaggregatingindividualfuzzyoptionsintoagroupfuzzyconsensusopinion.Afterfactorsaffectinggroupopinionhavebeenanalyzed,thecalculationmethodofweightofeachexpert'evaluationopinionisputout.Theaggregatingprocessandmethodarediscussedindetail.Thecharactersandpropertiesofthismethodarealsointroducedandproved.Anexamplegivenattheendofpapershowstheeffectivenessofthismethod.Keywords: groupevaluation;consensusdegree;weightofevaluation1 ,,,,.,,(、).,.,.,,.[1],,,,.,..[2],,..,.,:1998-12-04.,,,.,,.2 、,m,m,(l,m,r),l,r,,.,.(、),{E,W,R,f},E={Ei|i=1,…,n},W={Wi|i=1,…,n},R={Ri|i=1,…,n}.f,Ri(i=1,…,n)R.2.1 1(a),R1=(1,2,3),R2=(5,6,7),,,,,,T,1(b),.RiRjT,Delphi[3],.a) b)T1 2.2 .,.2.2.1 ,,,,,,.iWi.2.2.2 .2.1 Ri=(li,mi,ri),Rj=(lj,mj,rj),S(Ri,Rj)=∫xmin(Ri(x),Rj(x))∫xmax(Ri(x),Rj(x))(1). ,,2.,:2.2 EiEjRi=(li,mi,ri),Rj=(lj,mj,5372 rj),SijRiRj,Sij=S(Ri,Rj).,:2.3 EiSi,:Si=1n-1∑nj=1,j≠iSij(2) ,,,:2.4 ,iSri:Sri=Si∑ni=1Si(3) Ei,.,,.2.2.3 ,,,,.3 ,,W1=W4,W2W3.3,.E1E4.,E1E4,E1E4,E1E2,E4E3.,E1E3“”,,,E1E4..,.2.5 SijEiEj,WjEj(j=1,2,…,n).EiIi:Ii=1n-1∑nj=1,j≠iWjSij(4) 2.6 IiEi,EiIri.Iri=Ii∑ni=1Ii(5) ,,,5420007..2.2.4 ,、.,..,:Ci=T1Wi+T2Sri+T3Iri(6)T1+T2+T3=1,T1T3,T2T3(6),,T1=1,T2=T3=0.,T2=1,T1=T3=0.,T1T2,,T2T1.Ci:2.1 ∑ni=1Ci=1 ∑ni=1Ci=∑ni=1(TWi+T2Sri+T3Iri)=T∑ni=1Wi+T2∑ni=1Sri+T3∑ni=1Iri=T1+T2+T3=12.3 CiEiRi,Ci,Ri.,,:R=∑ni=1CiRi(7)3 [4],.3.1 :EiEj,Ri=Rj,R=Ri.,,.:R=∑ni=i=1Ci*Ri=Ri∑ni=1Ci=Ri∑(T1Wi+T2Si+T3Ii)=RiT1∑ni=1Wi+T2∑ni=1Si+T3∑ni=1Ii ∑ni=1Wi=1,∑ni=1Si=1,∑ni=1Ii=1 R=Ri(T1+T2+T3)=Ri 3.2 R,:∩ni=1RλiR λ∈(0,1) ∩ni=1Rλi557∩ni=1Rλi=∩ni=1Rλi(aλi,bλi)=(maxni=1(aλi),minni=1(bλi))Rλ=∑ni=1CiRλi=∑ni=1Ciaλi,∑ni=1Cibλiminni=1(aλi)≤∑ni=1Cibλi≤maxni=1(bλi),minni=1(bλi)≤∑ni=1Cibλi≤maxni=1(bλi)∩ni=1RλiR 3.3 RiH(Ri),(8),H(Ri)=∫+∞-∞Ri(x)dx(8) minni=1(H(Ri))H(R)maxni=1(H(Ri)) H(R)=H∑ni=1CiRi=∑ni=1H(CiRi)=∑ni=1(CiH(Ri))minni=1H(Ri))≤H(Ri)≤maxni=1H(Ri)minni=1H(Ri)·∑ni=1Ci≤H(R)≤maxni=1H(Ri)·∑ni=1Ciminni=1H(Ri))≤H(R)≤maxni=1H(Ri) 3.4 ,.,{(1),(2),…,(n)}{1,2,…,n},R=f(R1,R2,…,Rn)=f(R(1),R(2),…,R(n)).4 E1,E2,E3,R1=(1,2,3),R2=(1.5,2.5,3.5),R3=(2,3,4),4(a).T0.2,,.:1),T2=1,T1=T3=0.(1):(Sij=10.3910.1420.39110.3910.1420.3911 (2)、(3),Sr:Sr=Sr1Sr2Sr3=0.2880.4240.288 ,(6),C,:C=S1S2S3=Sr=0.2880.4240.288 ,,E1E3,C1=C3,E1E3.(7)R(1)=∑3i=1CiRi=(1.5,2.5,3.5) 2)5620007T1=0.6,T2=0.3,T3=0.1,W1=0.5,W2=0.3,W3=0.2(1)~(7)Sr、Ir、CR(2):Sr=Sr1Sr2Sr3=0.2880.4240.288 Ir=Ir1Ir2Ir3=0.2400.4500.310c⊥=(T1 T2 T3)W1W2W3Sr1Sr2Sr3Ir1Ir2Ir3=(0.410 0.350 0.240)R(2)=∑3i=1(ciRi)=(1.415 2.415 3.415)4(b).21,E1,,E1,.a) b)4 5 .,,,、,.,.,、.,.:[1] .[J].,1995,6(5):59~63.[2] Hsi-MeiHsuetal.AggregationofFuzzyOptionsUnderGroupDecisionMaking[J].FuzzySetsandSystems1996,79(4):278~285.[3] SaatyTL.TheAnalyticHierarchyProless[M].NewYork:McGray-Hill,1980.[4] AndrasBardossyetal.CombinationofFuzzyNumbersRepresentingExpertOptions[J].FuzzySetsandSystems,1993,57(1):173~181.577
本文标题:一种群体评价一致性合成方法赵海燕
链接地址:https://www.777doc.com/doc-8693270 .html