您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2020年中考数学复习(通用)专题:几何压轴题型含答案
几何压轴题型类型一动点探究型在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图①,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是________,CE与AD的位置关系是________;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图②,图③中的一种情况予以证明或说理);(3)如图④,当点P在线段BD的延长线上时,连接BE,若AB=23,BE=219,求四边形ADPE的面积.【分析】(1)要求BP与CE的数量关系,连接AC,由菱形和等边三角形的性质根据SAS可证明△ABP≌△ACE,从而证得BP=CE,且∠ACE=30°,延长CE交AD于点F,可得∠AFC=90°,所以CE⊥AD;(2)无论选择图②还是图③,结论不变,思路和方法与(1)一致;(3)要求四边形ADPE的面积,观察发现不是特殊四边形,想到割补法,分成钝角△ADP和正△APE,分别求三角形的面积,相加即可.【自主解答】解:(1)BP=CE;CE⊥AD;(2)选图②,仍然成立,证明如下:如解图①,连接AC交BD于点O,设CE交AD于点H.在菱形ABCD中,∠ABC=60°,BA=BC,例1题解图①∴△ABC为等边三角形,∴BA=CA.∵△APE为等边三角形,∴AP=AE,∠PAE=∠BAC=60°,∴∠BAP=∠CAE.在△BAP和△CAE中,例1题解图②∴△BAP≌△CAE(SAS),∴BP=CE,∠ACE=∠ABP=30°.∵AC和BD为菱形的对角线,∴∠CAD=60°,∴∠AHC=90°,即CE⊥AD.选图③,仍然成立,证明如下:如解图②,连接AC交BD于点O,设CE交AD于点H,同理得△BAP≌△CAE(SAS),BP=CE,CE⊥AD.(3)如解图③,连接AC交BD于点O,连接CE交AD于点H,由(2)可知,CE⊥AD,CE=BP.在菱形ABCD中,AD∥BC,∴EC⊥BC.∵BC=AB=23,BE=219,∴在Rt△BCE中,CE=(219)2-(23)2=8,例1题解图③∴BP=CE=8.∵AC与BD是菱形的对角线,1∴∠ABD=∠ABC=30°,AC⊥BD,2∴BD=2BO=2AB·cos30°=6,1AO=AB=3,2∴DP=BP-BD=8-6=2,∴OP=OD+DP=5.在Rt△AOP中,AP=AO2+OP2=27,∴S四边形ADPE=S△ADP+S△APE13=DP·AO+·AP22413=×2×3+×(27)224=83.【难点突破】本题的难点:一是如何找到全等的三角形,根据含60°内角菱形的特点,连接AC是解决问题的关键;二是点P是动点,当它运动到菱形的外部时,在其运动过程中由“手拉手”模型找全等三角形;三是求不规则四边形的面积,要想到运用割补法,将四边形分解成两个三角形求解.点拔几何压轴题中的“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.1.已知,△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时:①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其他条件不变时,∠BDE的度数是____________________;(用含α的代数式表示)(3)若△ABC是等边三角形,AB=33,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.2.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长;第2题图②若DG=GF,求BC的长;(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.类型二新定义型我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②,图③中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC为等边三角形时,AD与BC的数量关系为AD=________BC;②如图③,当∠BAC=90°,BC=8时,则AD长为________.猜想论证(2)在图①中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图④,在四边形ABCD中,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.1【分析】(1)①证明△ADB′是含有30°角的直角三角形,则可得AD=AB′=21BC;②先证明△BAC≌△B′AC′,根据直角三角形斜边上的中线等于斜边的2一半即可;1(2)结论:AD=BC.如解图①中,延长AD到点M,使得AD=DM,连接B′M,2C′M,先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;(3)存在.如解图②中,延长AD交BC的延长线于点M,作BE⊥AD于点E,作线段BC的垂直平分线交BE于点P,交BC于点F,连接PA,PD,PC,作△PCD的中线PN,连接DF交PC于点O.先证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°即可.【自主解答】1解:(1)①;2【解法提示】∵△ABC是等边三角形,∴AB=BC=AB=AB′=AC′.∵DB′=DC′,∴AD⊥B′C′.∵α+β=180°,∴∠BAC+∠B′AC′=180°,∵∠BAC=60°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,11∴AD=AB′=BC.22②4;【解法提示】∵α+β=180°,∴∠BAC+∠B′AC′=180°.∵∠BAC=90°,∴∠B′AC′=∠BAC=90°.∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′(SAS),∴BC=B′C′.∵B′D=DC′,∴AD=12B′C′=12BC=4.(2)结论:AD=12BC.证明:如解图①中,延长AD到点M,使得AD=DM,连接例2题解图①∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC.∵α+β=180°,∴∠BAC+∠B′AC′=180°.∵∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A.∵AB=AB′,∴△BAC≌△AB′M(SAS),B′M,C′M.∴BC=AM,1∴AD=BC.2(3)存在.证明:如解图②中,延长AD交BC的延长线于点M,作BE⊥AD于点E,作线段BC的垂直平分线交BE于点P,交BC于点F,连接PA,PD,PC,作△PCD的中线PN,连接DF交PC于点O.例2题解图②∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=23,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°.在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=12BM=7,∴DE=EM-DM=3.∵AD=6,∴AE=DE.∵BE⊥AD,∴PA=PD.∵PF垂直平分BC,∴PB=PC.在Rt△CDF中,∵CD=23,CF=6,∴tan∠CDF=3,∴∠CDF=60°=∠CPF.易证△FCP≌△CFD,∴CD=PF.∵CD∥PF,∴四边形CDPF是平行四边形.∵∠DCF=90°.∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC-∠CDP=60°,∴△ADP是等边三角形.∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”.在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=(3)2+62=39.【难点突破】第(3)问根据新定义判断点P的存在性是本题难点,但运用“直角三角形中30°的角所对的直角边是斜边的一半”的性质以及三角形全等添加合适辅助线即可求解.点拔解决这类问题,首先要理解新定义的含义及实质;其次要注意,在证明线段、角度相等或某个特殊图形时,主要应用全等,在计算线段的长或图形的周长、面积时,常注意运用相似、勾股定理及图形面积公式等.1.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图①,若PA=PB,则点P为△ABC的准外心.1求解:(1)如图②,CD为等边△ABC的高,准外心P在高CD上,且PD=AB,求2∠APB的度数;(2)已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,求PA的长.2.如图①,在△ABC中,过顶点A作直线与对边BC相交于点D,两交点之间的线段把这个三角形分成两个图形.若其中有一个图形与原三角形相似,则把这条线段叫做这个三角形的“顶似线”.(1)等腰直角三角形的“顶似线”的条数为______;(2)如图②,在△ABC中,AB=AC,∠A=36°,BD是∠ABC的角平分线,求证:BD是△ABC的“顶似线”;(3)如图③,在△ABC中,AB=4,AC=3,BC=6,求△ABC的“顶似线”的长.3.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这条边上的“奇特三角形”,这条边称为“奇特边”.(1)如图①,已知△ABC是“奇特三角形”,AC>BC,且∠C=90°.①△ABC的“奇特边”是________;②设BC=a,AC=b,AB=c,求a∶b∶c;(2)如图②,AM是△ABC的中线,若△ABC是BC边上的“奇特三角形”,找出BC2与AB2+AC2之间的关系;(3)如图③,在四边形ABCD中,∠B=90°(AB<BC),BC=27,对角线AC把它分成了两个“奇特三角形”,且△ACD是以AC为腰的等腰三角形,求等腰△ACD的底边长.4.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=__________;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.类型三操作探究型【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=__________.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到
本文标题:2020年中考数学复习(通用)专题:几何压轴题型含答案
链接地址:https://www.777doc.com/doc-8727678 .html