您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 三年级奥数等差数列求和习 题及答案
计算(三)等差数列求和知识精讲1、定义:一个数列的前项的和为这个数列的和。2、表达方式:常用来表示。三:求和公式:和(首项末项)项数,。对于这个公式的得到可以从两个方面入手:(思路1) (思路2)这道题目,还可以这样理解:即,和。四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。譬如:①,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于;②,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于。例题精讲:例1:求和:(1)1+2+3+4+5+6=(2)1+4+7+11+13=(3)1+4+7+11+13+…+85=分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21(2)36(3)1247例2:求下列各等差数列的和。(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。例如(1)式=(1+199)×199÷2=19900答案:(1)19900(2)1160(3)5355例3:一个等差数列2,4,6,8,10,12,14,这个数列的和是多少?分析:根据中项定理,这个数列一共有7项,各项的和等于中间项乘以项数,即为:答案:56例4:求1+5+9+13+17……+401该数列的和是多少。分析:这个数列的首项是1,末项是401,项数是(401-1)÷4+1=101,所以根据求和公式,可有:和=(1+401)×101÷2=20301答案:20301例5:有一串自然数2、5、8、11、……,问这一串自然数中前61个数的和是多少?分析:即求首项是2,公差是3,项数是61的等差数列的和,根据末项公式:末项=2+(61-1)×3=182根据求和公式:和=(2+182)×61÷2=5612答案:5612例6:把自然数依次排成“三角形阵”,如图。第一排1个数;第二排3个数;第三排5个数;…求: (1)第十二排第一个数是几?最后一个数是几?(2)207排在第几排第几个数?(3)第13排各数的和是多少?分析:整体看就是自然数列,每排的个数的规律是1,3,5,7...即为奇数数列若排数为n(n≥2de自然数),则这排之前的数共有(n-1)(n-1)个。(1)第十二排共有23个数。前面共有(1+21)×11÷2=121个数,所以第十二排的第一个数为122,最后一个数为122+(23-1)×1=144(2)前十四排共有196个数,前十五排共有225个数,所以207在第十五排,第十五排的第一个数是197,所以207是第(207-197=10)个数(3)前十二排共有144个数,所以第十三排的第一个数是145,而第十三排共有25个数,所以最后一个数是145+(25-1)×1=169,所以和=(145+169)×25÷2=3925答案:(1)122;144(2)第十五排第10个数(3)3925例7:15个连续奇数的和是1995,其中最大的奇数是多少?分析:由中项定理,中间的数即第8个数为:,所以这个数列最大的奇数即第15个数是:。答案:147。例8:把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?分析:由题可知:由210拆成的7个数必构成等差数列,则中间一个数为210÷7=30,所以,这7个数分别是15、20、25、30、35、40、45。即第1个数是15,第6个数是40。答案:第1个数:15;第6个数:40。例9:已知等差数列15,19,23,……443,求这个数列的奇数项之和与偶数项之和的差是多少?分析:公差=19-15=4项数=(443-15)÷4+1=108倒数第二项=443-4=439奇数项组成的数列为:15,23,31……439,公差为8,和为(15+439)×54÷2=12258偶数项组成的数列为:19,27,35……443,公差为8,和为(19+443)×54÷2=12474差为12474-12258=216答案:216例10:在这一百个自然数中,所有能被9整除的数的和是多少?分析:每9个连续数中必有一个数是9的倍数,在中,我们很容易知道能被9整除的最小的数是,最大的数是,这些数构成公差为9的等差数列,这个数列一共有:项,所以,所求数的和是:.也可以从找规律角度分析.答案:例11:一串数按下面的规律排列:1、2、3、2、3、4、3、4、5、4、5、6……问:从左面第一个数起,前105个数的和是多少?分析:这些数字直接看没有什么规律,但是如果3个一组,会发现这样一个数列:6,9,12,15......即求首项是6,公差是3,项数是105÷3=35的和末项=6+3×(35-1)=108和=(6+108)×35÷2=1995答案:1995例12:在下面个方框中各填入一个数,使这个数从左到右构成等差数列,其中、已经填好,这个数的和为。分析:由题意知:这个数列是一个等差数列,又由题目给出的两个数和知:公差为,那么第一个方格填,最后一个方格是,由等差数列求和公式知和为:。答案:180。本讲小结:1.一个数列的前项的和为这个数列的和,我们称为。2.求和公式:和(首项末项)项数,。3.对于任意一个奇数项的等差数列,各项和等于中间项乘以项数。练习:1.求和:(1)1+3+5+7+9=(2)1+2+3+4+…+21=(3)1+3+5+7+9+…+39=分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。答案:(1)25(2)231(3)4002.求下列各等差数列的和。(1)1+2+3+…+100(2)3+6+9+…+39分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。答案:(1)5050(2)2733.一个等差数列4,8,12,16,20,24,28,32,36这个数列的和是多少?分析:根据中项定理,这个数列一共有9项,各项的和等于中间项乘以项数,即为:20×9=180答案:1804.所有两位单数的和是多少?分析:即求首项是11,末项是99的奇数数列的和为多少。和=(11+99)×45÷2=2475答案:24755.数列1、5、9、13、……,这串数列中,前91个数和是多少?分析:首项是1,公差是4,项数是91,根据重要公式,可得:末项=1+(91-1)×4=361和=(1+361)×91÷2=16471答案:164716.如图,把边长为1的小正方形叠成“金字塔形”图,其中黑白相间染色。如果最底层有15个正方形,问:“金字塔”中有多少个染白色的正方形,有多少个染黑色的正方形?分析:由题意可知,从上到下每层的正方形个数组成等差数列,其中,,,所以,所以,白色方格数是: 黑色方格数是:。答案:287.。分析:根据中项定理知:,所以原式。答案:7。8.把248分成8个连续偶数的和,其中最大的那个数是多少?分析:公差为2的递增等差数列。平均数:248÷8=31,第4个数:31-1=30;首项:30-6=24;末项:24+(8-1)×2=38。即:最大的数为38。答案:389.求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。分析:解法1:可以看出,2,4,6,…,2000是一个公差为2的等差数列,1,3,5,…,1999也是一个公差为2的等差数列,且项数均为1000,所以:原式=(2+2000)×1000÷2-(1+1999)×1000÷2=1000解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式=1000×1=1000答案:100010.在这一百个自然数中,所有不能被9整除的数的和是多少?分析:先计算的自然数和,再减去能被9整除的自然数和,就是所有不能被9整除的自然数和了.,,所有不能被9整除的自然数和:.如果直接计算不能被9整除的自然数和,是很麻烦的,所以先计算所有的自然数和,再排除掉能被9整除的自然数和,这样计算过程变得简便多了。答案:59411.一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?分析:观察发现,这堆钢管的排列就是一个等差数列:首项是3,公差是1,末项是10,项数是8根据求和公式,和=(3+10)×8÷2=52(根)所以这堆钢管共有52根。答案:52根。12.求100以内除以3余2的所有数的和。解析:100以内除以3余2的数为2、5、8、11、……98公差为3的等差数列,首先求出一共有多少项,,再利用公式求和。答案:1650。
本文标题:三年级奥数等差数列求和习 题及答案
链接地址:https://www.777doc.com/doc-8748109 .html