您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2020年考研数学(一)真题及解析
2020年考研数学(一)真题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。1.x0时,下列无穷小量中最高阶是()A.C.x0e1dtB.ln(1t2x0t3)dtsinx0sint2dtD.x1cosx0sint3dt【答案】D(A)lim【解析】x0+0(et1)dtx32limx0+x0(et1)dt3x22x113t2,(e1)dt~x,可知x0,033(B)limx0+x0ln(1t3)dtx52x25ln(1x3)23lim,可知ln(1t)dt~x2,x03+0x05522x5(C)limx0+sinx0sint2dtx3sinxsin(sin2x)cosxcosx1132limlimsintdt~x,,可知0x0+x0+3x2333x0(D)limx0+1cosx0sint3dtx5sin3(1cosx)sinx(1cosx)3sinx1lim,可知44x0+5x5x1021cosx0sint3dt~1x5,x0102sint3dt的阶数最高,故选(D)通过对比,1cosx02.设函数fx在区间1,1内有定义,且limfx0,则()x0A.当limfxxfxx2x00,fx在x0处可导.B.当limx00,fx在x0处可导.C.当fx在x0处可导时,limfxxx00.D.当fx在x0处可导时,limfxx2x00.【答案】C【解析】当f(x)在x0处可导时,由f(0)limfx0,且x0f(0)limx0f(x)f(0)f(x)f(x)fxlim0,故选C,也即lim存在,从而limx0x0x0x0xxxff,,10,0非零向量d与xy3.设函数fx,y在点0,0处可微,f0,00,nn垂直,则()A.x,y0,0limnx,y,fx,yxy220存在.B.x,y0,0limnx,y,fx,yxy220存在.C.x,y0,0【答案】Alimdx,y,fx,yxy220存在.D.x,y0,0limdx,y,fx,yxy220.【解析】函数fx,y在点0,0处可微,f0,00,limx0y0f(x,y)f(0,0)fx(0,0)xfy(0,0)yxy220,limx0y0f(x,y)fx(0,0)xfy(0,0)yxy220由于nx,y,fx,y=fx(0,0)xfy(0,0)yf(x,y),所以x,y0,0limnx,y,fx,yxy220存在4.设R为幂级数arnn1n的收敛半径,r是实数,则()A.arnn1n发散时,rR.B.arnn1n发散时,rR.C.rR时,【答案】Aarnn1n发散.D.rR时,arnn1n发散.【解析】R为arnn1n的收敛半径,所以arnn1n在(R,R)必收敛,所以arnn1n发散时,rR.故选A5.若矩阵A经初等列变换化成B,则()A.存在矩阵P,使得PAB.B.存在矩阵P,使得BPA.C.存在矩阵P,使得PBA.D.方程组Ax0与Bx0同解.【答案】B【解析】A经过初等列变换化成B,存在可逆矩阵P1使得AP11B,令P1P,得出ABP,故选B6.已知直线L1:xa2yb22c2xa3yb32c3与直线L2:相交于a1b1c1a2b2c2ai一点,法向量ibi,i1,2,3.则ciA.a1可由a2,a3线性表示.B.a2可由a1,a3线性表示.C.a3可由a1,a2线性表示.D.a1,a2,a3线性无关.【答案】Cxa2a1xa2yb22c2t,即有yb2tb1=2+t1【解析】令L1:a1b1c1zcc21xa3a2由L2方程得yb3tb2=3+t2,两条线相交,得2+t13+t2zcc32即2+t1t23t1(1t)23,故选C7.设A,B,C为三个随机事件,且PAPBPC1,PAB0,4PACPBC1,则A,B,C中恰有一个事件发生的概率为123215A..B..C..D..43212【答案】D【解析】P(ABC)P(ABUC)P(A)P(A(BUC))P(A)P(AB)P(AC)P(ABC)111004126P(BAC)P(BAUC)P(B)P(B(AUC))P(B)P(AB)P(BC)P(ABC)111004126P(CAB)P(CAUB)P(B)P(C(AUB))P(C)P(CB)P(CA)P(ABC)所以P(ABC)P(ABC)P(ABC)11110412121211156612121,28.设x1,x2,,xn为来自总体X的简单随机样本,其中PX0PX1100x表示标准正态分布函数,则利用中心极限定理可得PXi55的近似值为i1A.11.B.1.C.10,2.D.0,2.【答案】B10011【解析】由题意EX,DX,根据中心极限定理Xi~N(50,25),24i1100X50i5550100i1(1)所以PXi55=P2525i1二、填空题:9~14小题,每小题2分,共24分.请将解答写在答题纸指定位置上.9.lim【答案】-111.x0ex1ln1x1ln1xex1ln1xex11【解析】limxlimxlim2x0e1x0x0ln1x(e1)ln1xx1212xx1xx1ln1xe122=limlim122x0x0xxxd2yxt2110.设,则22dxylntt1t1.【答案】212dydydt11t【解析】tdxdxdttt21dydydddtd2y1dxdtdx2dxdtdxt2d2y得2dxt21t21=3ttt1211.若函数fx满足fxafxfx0a0,且f0m,f0n,则0f(x)dx.【答案】nam【解析】特征方程a10,则12a,121,所以两个特征根都是负的。20f(x)dx0namf(x)af(x)dxf(x)af(x)012.设函数fx,y【答案】4exy02fedt,则xyxt21,1.f2f2fx(xy)2x(xy)23x3y2x3y2ex,ex3xee,【解析】yxxyy1,14e13.行列式a0110a111111a00a.【答案】a4a【解析】42a0110a1111a0011110aa11101a1a1001a1a10111000a0a01aa1aa11000a00011a1111a222a211=a000a00242a(a)(4a)a4a22a2,上的均匀分布,YsinX,则CovX,Y.2214.设x顺从区间【答案】21【解析】f(x)02其他x2CovX,YEXYEXEY=212xsinxdx212xdx212sinxdx212xsinxdx2三、解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答写出文字说明、证明过程或演算步骤.15.(本题满分10分)求函数fx,yx8yxy的极值.33【答案】1216f123xy0xx0x6【解析】令得出或y0y1f24y2x012y2f2f2f6xA,1B,248yCx2xyy当x0,y0时,ACB02当x11,y时,A1,B1,C4,ACB2061233111111所以f(,)866126121221616.(本题满分10分)计算曲线积分I方向.【答案】4xyxy22dxL4x2y24x2ydy,其中L是xy2,方向为逆时针QP4x2y28xy4xyxy,Q2【解析】P,且22xy(4x2y2)24xy4xy取逆时针方向L14xy,则222I=4xyxy4xyxy4xyxydxdxdydxdy2222222L4x2y2LLL114xy4xy4xy4xy4xy14xyxydxdy=L14x2y24x2y2L1(4xy)dx(xy)dy22dxdyD22217.(本题满分10分)1设数列an满足a11,n1an+1nan,证明:当x1时幂级数anxn收2n1敛,并求其和函数.【解析】根据n1an+1nan11a=limnna2n121limnn1n所以收敛半径为R1=1,所以当x1时幂级数anxn收敛。n1n1nn令s(x)anx,s(x)nanxn1(n1)an1xa1(n1)an1x1(n)anxn2n1n0n1n1n111nn1nanxanx1xnanxn1s(x)2n1n12n1所以s(x)1xs(x)11s(x)整理为(1x)s(x)s(x)1,即22s(x)c111,解得s(x)2,根据s(0)2,得出s(x)2(1x)(1x)1x21xs(x)218.(本题满分10分)设为由面Zx2y21x2y24的下侧,fx是连续函数,计算Ixfxy2xydydzyfxy2yxdzdxzfxyzdxdy.【答案】143【解析】Zxxxy22,Zyyxy22Ixfxy2xydydzyfxy2yxdzdxzfxyzdxdy)y)xfxy2xy(Zxyfxy2yx(ZzfxyzdxdyDxyDxyx2y2fxyx2y2dxdyx2y2fxy2222201xydxdydr2drDxy14319.(本题满分10分)设函数fx在区间0,2上具有连续导数,f0f20,Mmaxfx,x0,2证明:(1)存在0,2,使得fM;
本文标题:2020年考研数学(一)真题及解析
链接地址:https://www.777doc.com/doc-8754943 .html