您好,欢迎访问三七文档
参考资料,少熬夜!高三数学说课稿作为一名无私的教师,经常需要准备讲稿,有利于教学水平的提高和教研活动的开展。那怎么写好讲稿呢?以下是网友整理的三年级数学讲座手稿。欢迎阅读,希望你能喜欢。高三数学说课稿【第一篇】一、教材结构与内容简析1本节内容在全书及章节的地位:《向量》出现在高中数学第一册(下)第五章第1节。本节内容是传统意义上《平面解析几何》的基础部分,因此,在《数学》这门学科中,占据极其重要的地位。2数学思想方法分析:(1)从“向量可以用有向线段来表示”所反映出的“数”与“形”之间的转化,就可以看到《数学》本身的“量化”与“物化”。(2)从建构手段角度分析,在教材所提供的材料中,可以看到“数形结合”思想。二、教学目标根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:1基础知识目标:掌握“向量”的概念及其表示方法,能利用它们解决相关的问题。2能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。3创新素质目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合能力;《向量》的教学旨在培养学生的“知识重组”意识和“数形结合”能力。4个性品质目标:培养学生勇于探索,善于发现,独立意识以及不断超越自我的创新品质。三、教学重点、难点、关键重点:向量概念的引入。难点:“数”与“形”完美结合。关键:本节课通过“数形结合”,着重培养和发展学生的认知和变通能力。四、教材处理建构主义学习理论认为,建构就是认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。本课时为何提出“数形结合”呢,应该说,这一参考资料,少熬夜!处理方法正是基于此理论的体现。其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成为数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间简单的和谐关系。五、教学模式教学过程是教师活动和学生活动的十分复杂的动态性总体,是教师和全体学生积极参与下,进行集体认识的过程。教为主导,学为主体,又互为客体。启动学生自主性学习,启发引导学生实践数学思维的过程,自得知识,自觅规律,自悟原理,主动发展思维和能力。六、学习方法1、让学生在认知过程中,着重掌握元认知过程。2、使学生把独立思考与多向交流相结合。七、教学程序及设想(一)设置问题,创设情景。1、提出问题:在日常生活中,我们不仅会遇到大小不等的量,还经常会接触到一些带有方向的量,这些量应该如何表示呢?2、(在学生讨论基础上,教师引导)通过“力的图示”的回忆,分析大小、方向、作用点三者之间的关系,着重考虑力的作用点对运动的相对性与绝对性的影响。设计意图:1、把教材内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”、惊讶、困惑、感到棘手,紧张地沉思,期待寻找理由和论证的过程。2、我们知道,学习总是与一定知识背景即情境相联系的。在实际情境下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的`新知识。这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情境中。(二)提供实际背景材料,形成假说。1、小船以/s的速度航行,已知一条河长20xxm,宽150m,问小船需经过多长时间,到达对岸?2、到达对岸?这句话的实质意义是什么?(学生讨论,期望回答:指代不明。)3、由此实际问题如何抽象为数学问题呢?(学生交流讨论,期望回答:要确定某些量,有时除了知道其大小外,还需要了解其方向。)设计意图:1、教师站在稍稍超前于学生智力发展的边界上(即思维的最邻近发展)通过问题引领,来促成学生“数形结合”思想的形成。参考资料,少熬夜!2.通过学生交流讨论,把实际问题抽象成为数学问题,并赋予抽象的数学符号和表达方式。(三)引导探索,寻找解决方案。1、如何补充上面的题目呢?从已学过知识可知,必须增加“方位”要求。2.方位的实质是什么呢?即位移的本质是什么?期望回答:大小与方向的统一。3、零向量、单位向量、平行向量、相等向量、共线向量等系列化概念之间的关系是什么?(明确要领。)设计意图:学生在教师引导下,在积累了已有探索经验的基础上,进行讨论交流,相互评价,共同完成了“数形结合”思想上的建构。2、这一问题设计,试图让学生不“唯书”,敢于和善于质疑批判和超越书本和教师,这是创新素质的突出表现,让学生不满足于现状,执着地追求。3、尽可能地揭示出认知思想方法的全貌,使学生从整体上把握解决问题的方法。(四)总结结论,强化认识。经过引导,学生归纳出“数形结合”的思想——“数”与“形”是一个问题的两个方面,“形”的外表里,蕴含着“数”的本质。设计意图:促进学生数学思想方法的形成,引导学生确实掌握“数形结合”的思想方法。(五)变式延伸,进行重构。教师引导:在此我们已经知道,欲解决一些抽象的数学问题,可以借助于图形来解决,这就是向量的理论基础。下面继续研究,与向量有关的一些概念,引导学生利用模型演示进行观察。概念1:长度为0的向量叫做零向量。概念2:长度等于一个单位长度的向量,叫做单位向量。概念3:方向相同或相反的非零向量叫做平行(或共线)向量。(规定:零向量与任一向量平行。)概念4:长度相等且方向相同的向量叫做相等向量。设计意图:1.学生在教师引导下,在积累了已有探索经验的基础上进行讨论交流,相互评价,共同完成了有向线段与向量两者关系的建构。2.这些概念的比较可以让学生加强对“向量”概念的理解,以便更好地“数形结合”。3.让学生对教学思想方法,及其应情境达到较为纯熟的认识,并将这种认识思维地贮存在大脑中,随时提参考资料,少熬夜!取和应用。(六)总结回授调整。1.知识性内容:例设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC相等的向量。2.对运用数学思想方法创新素质培养的小结:a.要善于在实际生活中,发现问题,从而提炼出相应的数学问题。发现作为一种意识,可以解释为“探察问题的意识”;发现作为一种能力,可以解释为“找到新东西”的能力,这是培养创造力的基本途径。b.问题的解决,采用了“数形结合”的数学思想,体现了数学思想方法是解决问题的根本途径。c.问题的变式探究的过程,是一个创新思维活动过程中一种多维整合过程。重组知识的过程,是一种多维整合的过程,是一个高层次的知识综合过程,是对教材知识在更高水平上的概括和总结,有利于形成一个自我再生力强的开放的动态的知识系统,从而使得思维具有整体功能和创新能力。2.设计意图:1、知识性内容的总结,可以把课堂教学传授的知识,尽快转化为学生的素质。2、运用数学方法创新素质的小结,能让学生更系统,更深刻地理解数学思想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质。这是每堂课必不可少的一个重要环节。(七)布置作业。反馈“数形结合”的探究过程,整理知识体系,并完成习题的内容。高三数学说课稿【第二篇】1.教材分析1-1教学内容及包含的知识点(1)本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容(2)包含知识点:点到直线的距离公式和两平行线的距离公式1-2教材所处地位、作用和前后联系本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。可见,本课有承前启后的作用。参考资料,少熬夜!1-3教学大纲要求掌握点到直线的距离公式1-4高考大纲要求及在高考中的显示形式掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。1-5教学目标及确定依据教学目标(1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。(2)培养学生探究性思维方法和由特殊到一般的研究能力。(3)认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。(4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。确定依据:中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(xxxx年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(xxxx年)1-6教学重点、难点、关键(1)重点:点到直线的距离公式确定依据:由本节在教材中的地位确定(2)难点:点到直线的距离公式的推导确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。分析“尝试性题组”解题思路可突破难点(3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。2.教法2-1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。确定依据:(1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进性原则。(2)事物之间相互联系,相互转化的辩证法思想。2-2教具:多媒体和黑板等传统教具3.学法参考资料,少熬夜!3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。3-2学情:(1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。(2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。(3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。3-3学具:直尺、三角板3.教学程序教学环节教学过程设计意图创设情景(三分钟)唤醒旧知师:“距离产生美”。昨天我与**同学相隔遥远,彼此毫无感觉,今天的零距离荡漾着亲切,却少了想象的空间,看来把握恰当的距离才能感知美好。(1)你有什么办法能得到我(A点)和**同学(B点)之间的距离?生:思考,回答。(2)“形缺数时难入微”。(1)中的各种办法中哪个较好?还有没有更好的办法。生:比较,回答。教学机智:针对学生的回答,老师进行引导。老师进行铺垫、递进,或深入、拓展。师:由此看来,两点间距离公式成为解决该问题的首选。让我们一鼓作气,继续努力。提问一:还原学生的数学现实,诱发动机,乐于参与。提问二:既可点燃数形结合的思想,又可唤醒两点间距离公式。根据认识发展理论,学生认知结构的发展是在其认识的过程中伴随同化和顺应的认知结构不断再建构的过程,达到以旧悟新的目的。(1)(2)两问的解决为后继参考资料,少熬夜!知识作好了铺垫。4.教学评价学生完成反思性学习报告,书写要求:(1)整理知识结构(2)总结所学到的基本知识,技能和数学思想方法(3)总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因(4)谈谈你对老师教法的建议和要求。作用:(1)通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。(2)报告的写作本身就是一种创造性活动。(3)及时了解学生学习过程中的知识缺陷,思维障
本文标题:高三数学说课稿
链接地址:https://www.777doc.com/doc-9211948 .html