您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高一数学必修三教案3篇
参考资料,少熬夜!高一数学必修三教案3篇【导读指引】三一刀客最漂亮的网友为您整理分享的“高一数学必修三教案3篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!高一数学必修三教案1教学目标:1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。教学重点、难点:1、重点:指数函数的图像和性质2、难点:底数a的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。教学方法:引导——发现教学法、比较法、讨论法教学过程:一、事例引入T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数?S:————————T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,——————。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是:y=2x)S,T:(讨论)这是球菌个数y关于分裂次数x的函数,该函数是什么样的形式(指数形式),从函数特征分析:底数2是一个不等于1的正数,是常量,而指数x却是变量,我们称这种函数为指数函数——点题。二、指数函数的定义参考资料,少熬夜!C:定义:函数y=ax(a0且a≠1)叫做指数函数,x∈R。。问题1:为何要规定a0且a≠1?S:(讨论)C:(1)当a就没有意义;(2)当a=0时,ax有时会没有意义,如x=—2时,(3)当a=1时,函数值y恒等于1,没有研究的必要。巩固练习1:下列函数哪一项是指数函数()A、y=x2B、y=2x2C、y=2xD、y=—2x高一数学必修三教案21.点的位置表示:(1)先取一个点O作为基准点,称为原点。取定这个基准点之后,任何一个点P的位置就由O到P的向量唯一表示。称为点P的位置向量,它表示的是点P相对于点O的位置。(2)在平面上取定两个相互垂直的单位向量e1,e2作为基,则可唯一地分解为=xe1+ye2的形式,其中x,y是一对实数。(x,y)就是向量的坐标,坐标唯一地表示了向量,从而也唯一地表示了点P.2.向量的坐标:向量的坐标等于它的终点坐标减去起点坐标。3.基本公式:(1)前提条件:A(x1,y1),B(x2,y2)为平面直角坐标系中的'两点,M(x,y)为线段AB的中点。(2)公式:①两点之间的距离公式|AB|=(x2-x1)2+(y2-y1)2.②中点坐标公式4.定比分点坐标设A,B是两个不同的点,如果点P在直线AB上且=λ,则称λ为点P分有向线段所成的比。注意:当P在线段AB之间时,,方向相同,比值λ0.我们也允许点P在线段AB之外,此时,方向相反,比值λ定比分点坐标公式:已知两点A(x1,y1),B(x2,y2),点P(x,y)分所成的比为λ。则x=x1+λx21+λ,y=y1+λy21+λ。重心的坐标:三角形重心的坐标等于三个顶点相应坐标的算术平均值,即x1+x2+x33,y1+y2+y33.一、中点坐标公式的运用例1已知ABCD的两个顶点坐标分别为A(4,2),B(5,7),对角线的交点为E(-3,4),求另外两个顶点C,参考资料,少熬夜!D的坐标。平行四边形的对角线互相平分,交点为两个相对顶点的中点,利用中点公式求。解:设C(x1,y1),D(x2,y2)。∵E为AC的中点,∴-3=x1+42,4=y1+22.解得x1=-10,y1=6.又∵E为BD的中点,∴-3=5+x22,4=7+y22.解得x2=-11,y2=1.∴C的坐标为(-10,6),D点的坐标为(-11,1)。若M(x,y)是A(a,b)与B(c,d)的中点,则x=a+c2,y=b+d2.也可理解为A关于M的对称点为B,若求B,则可用变形公式c=2x-a,d=2y-b.1-1已知矩形ABCD的两个顶点坐标是A(-1,3),B(-2,4),若它的对角线交点M在x轴上,求另外两个顶点C,D的坐标。解:如图,设点M,C,D的坐标分别为(x0,0),(x1,y1),(x2,y2),依题意得0=y1+32y1=-3;0=y2+42y2=-4;x0=x1-12x1=2x0+1;x0=x2-22x2=2x0+2.又∵|AB|2+|BC|2=|AC|2,∴(-1+2)2+(3-4)2+(-2-2x0-1)2+(4+3)2=(-1-2x0-1)2+(3+3)2.整理得x0=-5,∴x1=-9,x2=-8∴点C,D的坐标分别为(-9,-3),(-8,-4)。二、距离公式的运用例2已知△ABC三个顶点的坐标分别为A(4,1),B(-3,2),C(0,5),则△ABC的周长为()。利用两点间的距离公式直接求解,然后求和。解析:∵A(4,1),B(-3,2),C(0,5),∴|AB|=(-3-4)2+(2-1)2=50=52,|BC|=[0-(-3)]2+(5-2)2=18=32,|AC|=(0-4)2+(5-1)2=32=42.∴△ABC的周长为|AB|+|BC|+|AC|=52+32+42=122.答案:C(1)熟练掌握两点间的距离公式,并能灵活运用。(2)注意公式的结构特征。若y2=y1,|AB|=(x2-x1)2=|x2-x1|就是数轴上的两点间距离公式。参考资料,少熬夜!高一数学必修三教案3教材:逻辑联结词(1)目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。过程:一、提出课题:简单逻辑、逻辑联结词二、命题的概念:例:125①3是12的约数②是整数③定义:可以判断真假的语句叫命题。正确的叫真命题,错误的叫假命题。如:①②是真命题,③是假命题反例:3是12的约数吗?x5都不是命题不涉及真假(问题)无法判断真假上述①②③是简单命题。这种含有变量的语句叫开语句(条件命题)。三、复合命题:1、定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。2、例:(1)10可以被2或5整除④10可以被2整除或10可以被5整除(2)菱形的对角线互相菱形的对角线互相垂直且菱形的垂直且平分⑤对角线互相平分(3)非整数⑥非是整数观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。3、其实,有些概念前面已遇到过如:或:不等式x2x60的解集{x|x2或x3}且:不等式x2x60的解集{x|23}即{x|x2且x3}四、复合命题的构成形式如果用p,q,r,s表示命题,则复合命题的形式接触过的有以下三种:即:p或q(如④)记作pqp且q(如⑤)记作pq非p(命题的否定)(如⑥)记作p小结:1.命题2.复合命题3.复合命题的构成形式
本文标题:高一数学必修三教案3篇
链接地址:https://www.777doc.com/doc-9576184 .html